12,104 research outputs found

    Death of a 78-Year Old Woman

    Get PDF
    This official opinion of the District Attorney of Milwaukee County, E. Michael McCann, represents a synthesis of sound jurisprudence and sound medical-ethical reasoning in a difficult medical situation

    Lightweight Sensing Uncertainty Metric – Incorporating Accuracy and Trust

    Get PDF

    Screening in gated bilayer graphene via variational calculus

    Get PDF
    We analyze the response of bilayer graphene to an external transverse electric field using a variational method. A previous attempt to do so in a recent paper by Falkovsky [Phys. Rev. B 80, 113413 (2009)] is shown to be flawed. Our calculation reaffirms the original results obtained by one of us [E. McCann, Phys. Rev. B 74, 161403(R) (2006)] by a different method. Finally, we generalize these original results to describe a dual-gated bilayer graphene device.Comment: 4 pages, 1 figur

    Radiation environment and shielding for early manned Mars missions

    Get PDF
    The problem of shielding a crew during early manned Mars missions is discussed. Requirements for shielding are presented in the context of current astronaut exposure limits, natural ionizing radiation sources, and shielding inherent in a particular Mars vehicle configuration. An estimated range for shielding weight is presented based on the worst solar flare dose, mission duration, and inherent vehicle shielding

    Forward velocity effects on fan noise and the influence of inlet aeroacoustic design as measured in the NASA Ames 40 x 80 foot wind tunnel

    Get PDF
    The inlet radiated noise of a turbofan engine was studied. The principal research objectives were to characterize or suppress such noise with particular regard to its tonal characteristics. The major portion of this research was conducted by using ground-based static testing without simulation of aircraft forward speed or aircraft installation-related aeroacoustic effects

    Gate-tunable bandgap in bilayer graphene

    Full text link
    The tight-binding model of bilayer graphene is used to find the gap between the conduction and valence bands, as a function of both the gate voltage and as the doping by donors or acceptors. The total Hartree energy is minimized and the equation for the gap is obtained. This equation for the ratio of the gap to the chemical potential is determined only by the screening constant. Thus the gap is strictly proportional to the gate voltage or the carrier concentration in the absence of donors or acceptors. In the opposite case, where the donors or acceptors are present, the gap demonstrates the asymmetrical behavior on the electron and hole sides of the gate bias. A comparison with experimental data obtained by Kuzmenko et al demonstrates the good agreement.Comment: 6 pages, 5 figure

    The influence of interlayer asymmetry on the magnetospectroscopy of bilayer graphene.

    Get PDF
    We present a self-consistent calculation of the interlayer asymmetry in bilayer graphene caused by an applied electric field in magnetic fields. We show how this asymmetry influences the Landau level spectrum in bilayer graphene and the observable inter-Landau level transitions when they are studied as a function of high magnetic field at fixed filling factor as measured experimentally in Ref. [1]. We also analyze the magneto-optical spectra of bilayer flakes in the photon-energy range corresponding to transitions between degenerate and split bands of bilayers

    Tunable graphene system with two decoupled monolayers

    Get PDF
    The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of graphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nanometer scale separation between them
    corecore