53 research outputs found

    Expression dynamics of metalloproteinases during mandibular bone formation: association with Myb transcription factor

    Get PDF
    As the dentition forms and becomes functional, the alveolar bone is remodelled. Metalloproteinases are known to contribute to this process, but new regulators are emerging and their contextualization is challenging. This applies to Myb, a transcription factor recently reported to be involved in bone development and regeneration. The regulatory effect of Myb on Mmps expression has mostly been investigated in tumorigenesis, where Myb impacted the expression of Mmp1, Mmp2, Mmp7, and Mmp9. The aim of this investigation was to evaluate the regulatory influence of the Myb on Mmps gene expression, impacting osteogenesis and mandibular bone formation. For that purpose, knock-out mouse model was used. Gene expression of bone-related Mmps and the key osteoblastic transcription factors Runx2 and Sp7 was analysed in Myb knock-out mice mandibles at the survival limit. Out of the metalloproteinases under study, Mmp13 was significantly downregulated. The impact of Myb on the expression of Mmp13 was confirmed by the overexpression of Myb in calvarial-derived cells causing upregulation of Mmp13. Expression of Mmp13 in the context of other Mmps during mandibular/alveolar bone development was followed in vivo along with Myb, Sp7 and Runx2. The most significant changes were observed in the expression of Mmp9 and Mmp13. These MMPs and MYB were further localized in situ by immunohistochemistry and were identified in pre/osteoblastic cells as well as in pre/osteocytes. In conclusion, these results provide a comprehensive insight into the expression dynamics of bone related Mmps during mandibular/alveolar bone formation and point to Myb as another potential regulator of Mmp13

    Prenatal ultrasound and postmortem histologic evaluation of tooth germs: an observational, transversal study

    Get PDF
    Introduction: Hypodontia is the most frequent developmental anomaly of the orofacial complex, and its detection in prenatal ultrasound may indicate the presence of congenital malformations, genetic syndromes and chromosomal abnormalities.To date, only a few studies have evaluated the histological relationship of human tooth germs identified by two-dimensional (2D) ultrasonography. In order to analyze whether two-dimensional ultrasonography of tooth germs may be successfully used for identifying genetic syndromes, prenatal ultrasound images of fetal tooth germs obtained from a Portuguese population sample were compared with histological images obtained from fetal autopsies.Methods: Observational, descriptive, transversal study. The study protocol followed the ethical principles outlined by the Helsinki Declaration and was approved by the Ethics Committee of the School of Dental Medicine, University of Porto (FMDUP, Porto, Portugal) and of the Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/EPE, Porto, Portugal) as well as by the CGC Genetics Embryofetal Pathology Laboratory. Eighty-five fetuses examined by prenatal ultrasound screening from May 2011 to August 2012 had an indication for autopsy following spontaneous fetal death or medical termination of pregnancy. Of the 85 fetuses, 37 (43.5%) were randomly selected for tooth germ evaluation by routine histopathological analysis. Fetuses who were up to 30 weeks of gestation, and whose histological pieces were not representative of all maxillary tooth germs was excluded. Twenty four fetus between the 13th and 30th weeks of gestation fulfilled the parameters to autopsy.Results: Twenty four fetuses were submitted to histological evaluation and were determined the exact number, morphology, and mineralization of their tooth germs. All tooth germs were identifiable with ultrasonography as early as the 13th week of gestation. Of the fetuses autopsied, 41.7% had hypodontia (29.1% maxillary hypodontia and 20.9% mandibular hypodontia).Conclusions: This results indicateinfo:eu-repo/semantics/publishedVersio

    Death in the life of a tooth

    No full text

    Non-apoptotic functions of caspase-7 during osteogenesis

    Get PDF
    Caspase-3 and -7 are generally known for their central role in the execution of apoptosis. However, their function is not limited to apoptosis and under specific conditions activation has been linked to proliferation or differentiation of specialised cell types. In the present study, we followed the localisation of the activated form of caspase-7 during intramembranous (alveolar and mandibular bones) and endochondral (long bones of limbs) ossification in mice. In both bone types, the activated form of caspase-7 was detected from the beginning of ossification during embryonic development and persisted postnatally. The bone status was investigated by microCT in both wild-type and caspase-7-deficient adult mice. Intramembranous bone in mutant mice displayed a statistically significant decrease in volume while the mineral density was not altered. Conversely, endochondral bone showed constant volume but a significant decrease in mineral density in caspase-7 knock-out mice. Cleaved caspase-7 was present in a number of cells that did not show signs of apoptosis. PCR array analysis of the mandibular bone of caspase-7-deficient versus wild-type mice pointed to a significant decrease in mRNA levels for Msx1 and Smad1 in early bone formation. These observations might explain the decrease in the alveolar bone volume of adult knock-out mice. In conclusion, this study is the first to report a non-apoptotic function of caspase-7 in osteogenesis and also demonstrates further specificities in endochondral versus intramembranous ossification

    Death in the Life of a Tooth

    No full text

    Development of successional teeth

    No full text
    • …
    corecore