195 research outputs found

    Production of light pseudoscalars in external electromagnetic fields by the Schwinger mechanism

    Full text link
    We generalize the Schwinger mechanism and calculate the probability of the decay of intense electromagnetic fields to pseudoscalar particles. We also point out that our estimate for axion emission in a previous paper was incorrect.Comment: 25 pages including 9 figures. Version that matches published versio

    Primordial Helium Production in a Charged Universe

    Get PDF
    We use the constraints arising from primordial nucleosynthesis to bound a putative electric charge density enq|e|n_q of the universe. We find nq/nγ1043|n_q/n_\gamma| \lesssim 10^{-43}, four orders of magnitude more stringent than previous limits. We also work out the bounds on nqn_q in models with a photon mass, that allows to have a charge density without large-scale electric fields

    Photon Spectrum Produced by the Late Decay of a Cosmic Neutrino Background

    Get PDF
    We obtain the photon spectrum induced by a cosmic background of unstable neutrinos. We study the spectrum in a variety of cosmological scenarios and also we allow for the neutrinos having a momentum distribution (only a critical matter dominated universe and neutrinos at rest have been considered until now). Our results can be helpful when extracting bounds on neutrino electric and magnetic moments from cosmic photon background observations.Comment: RevTex, 14 pages, 3 figures; minor changes, references added. To appear in Phys. Rev.

    Coulomb's law corrections from a gauge-kinetic mixing

    Full text link
    We study the static quantum potential for a gauge theory which includes the mixing between the familiar photon U(1)QEDU(1)_{QED} and a second massive gauge field living in the so-called hidden-sector U(1)hU(1)_h. Our discussion is carried out using the gauge-invariant but path-dependent variables formalism, which is alternative to the Wilson loop approach. Our results show that the static potential is a Yukawa correction to the usual static Coulomb potential. Interestingly, when this calculation is done inside a superconducting box, the Coulombic piece disappears leading to a screening phase.Comment: 4 page

    Cosmological mass limits on neutrinos, axions, and other light particles

    Full text link
    The small-scale power spectrum of the cosmological matter distribution together with other cosmological data provides a sensitive measure of the hot dark matter fraction, leading to restrictive neutrino mass limits. We extend this argument to generic cases of low-mass thermal relics. We vary the cosmic epoch of thermal decoupling, the radiation content of the universe, and the new particle's spin degrees of freedom. Our treatment covers various scenarios of active plus sterile neutrinos or axion-like particles. For three degenerate massive neutrinos, we reproduce the well-known limit of m_nu < 0.34 eV. In a 3+1 scenario of 3 massless and 1 fully thermalized sterile neutrino we find m_nu < 1.0 eV. Thermally produced QCD axions must obey m_a < 3.0 eV, superseding limits from a direct telescope search, but leaving room for solar eV-mass axions to be discovered by the CAST experiment.Comment: 15 pages, 6 figures, matches version in JCA
    corecore