1,496 research outputs found

    Graviton mediated photon-photon scattering in general relativity

    Get PDF
    In this paper we consider photon-photon scattering due to self-induced gravitational perturbations on a Minkowski background. We focus on four-wave interaction between plane waves with weakly space and time dependent amplitudes, since interaction involving a fewer number of waves is excluded by energy-momentum conservation. The Einstein-Maxwell system is solved perturbatively to third order in the field amplitudes and the coupling coefficients are found for arbitrary polarizations in the center of mass system. Comparisons with calculations based on quantum field theoretical methods are made, and the small discrepances are explained.Comment: 5 pages, 3 figure

    A Scalar Wigner Theory for Polarized Light in Nonlinear Kerr Media

    Get PDF
    A scalar Wigner distribution function for describing polarized light is proposed in analogy with the treatment of spin variables in quantum kinetic theory. The formalism is applied to the propagation of circularly polarized light in nonlinear Kerr media and an extended phase space evolution equation is derived along with invariant quantities. We further consider modulation instability as well as the extension to partially coherent fields.Comment: 6 page

    Turbulence in Binary Bose-Einstein Condensates Generated by Highly Non-Linear Rayleigh-Taylor and Kelvin-Helmholtz Instabilities

    Get PDF
    Quantum turbulence (QT) generated by the Rayleigh-Taylor instability in binary immiscible ultracold 87Rb atoms at zero temperature is studied theoretically. We show that the quantum vortex tangle is qualitatively different from previously considered superfluids, which reveals deep relations between QT and classical turbulence. The present QT may be generated at arbitrarily small Mach numbers, which is a unique property not found in previously studied superfluids. By numerical solution of the coupled Gross-Pitaevskii equations we find that the Kolmogorov scaling law holds for the incompressible kinetic energy. We demonstrate that the phenomenon may be observed in the laboratory.Comment: Revised version. 7 pages, 8 figure

    Spin solitons in magnetized pair plasmas

    Full text link
    A set of fluid equations, taking into account the spin properties of the electrons and positrons in a magnetoplasma, are derived. The magnetohydrodynamic limit of the pair plasma is investigated. It is shown that the microscopic spin properties of the electrons and positrons can lead to interesting macroscopic and collective effects in strongly magnetized plasmas. In particular, it is found that new Alfvenic solitary structures, governed by a modified Korteweg-de Vries equation, are allowed in such plasmas. These solitary structures vanish if the quantum spin effects are neglected. Our results should be of relevance for astrophysical plasmas, e.g. in pulsar magnetospheres.Comment: 7 page

    Instability and dynamics of two nonlinearly coupled laser beams in a plasma

    Get PDF
    We investigate the nonlinear interaction between two laser beams in a plasma in the weakly nonlinear and relativistic regime. The evolution of the laser beams is governed by two nonlinear Schroedinger equations that are coupled with the slow plasma density response. We study the growth rates of the Raman forward and backward scattering instabilities as well of the Brillouin and self-focusing/modulational instabilities. The nonlinear evolution of the instabilities is investigated by means of direct simulations of the time-dependent system of nonlinear equations.Comment: 18 pages, 8 figure

    Rotating perfect fluid sources of the NUT metric

    Full text link
    Locally rotationally symmetric perfect fluid solutions of Einstein's gravitational equations are matched along the hypersurface of vanishing pressure with the NUT metric. These rigidly rotating fluids are interpreted as sources for the vacuum exterior which consists only of a stationary region of the Taub-NUT space-time. The solution of the matching conditions leaves generally three parameters in the global solution. Examples of perfect fluid sources are discussed.Comment: 8 pages, late

    Cosmic magnetic fields from velocity perturbations in the early Universe

    Full text link
    We show, using a covariant and gauge-invariant charged multifluid perturbation scheme, that velocity perturbations of the matter-dominated dust Friedmann-Lemaitre-Robertson-Walker (FLRW) model can lead to the generation of cosmic magnetic fields. Moreover, using cosmic microwave background (CMB) constraints, it is argued that these fields can reach strengths of between 10^{-28} and 10^{-29} G at the time the dynamo mechanism sets in, making them plausible seed field candidates.Comment: 11 pages, 1 figure, IOP style, minor changes and typos correcte

    Electrostatic pair creation and recombination in quantum plasmas

    Full text link
    The collective production of electron-positron pairs by electrostatic waves in quantum plasmas is investigated. In particular, a semi-classical governing set of equation for a self-consistent treatment of pair creation by the Schwinger mechanism in a quantum plasma is derived.Comment: 4 pages, 3 figures, to appear in JETP Letter

    A possibility to measure elastic photon--photon scattering in vacuum

    Full text link
    Photon--photon scattering in vacuum due to the interaction with virtual electron-positron pairs is a consequence of quantum electrodynamics. A way for detecting this phenomenon has been devised based on interacting modes generated in microwave waveguides or cavities [G. Brodin, M. Marklund and L. Stenflo, Phys. Rev. Lett. \textbf{87} 171801 (2001)]. Here we materialize these ideas, suggest a concrete cavity geometry, make quantitative estimates and propose experimental details. It is found that detection of photon-photon scattering can be within the reach of present day technology.Comment: 7 pages, 3 figure
    corecore