11,887 research outputs found

    Model-Based Edge Detector for Spectral Imagery Using Sparse Spatiospectral Masks

    Get PDF
    Two model-based algorithms for edge detection in spectral imagery are developed that specifically target capturing intrinsic features such as isoluminant edges that are characterized by a jump in color but not in intensity. Given prior knowledge of the classes of reflectance or emittance spectra associated with candidate objects in a scene, a small set of spectral-band ratios, which most profoundly identify the edge between each pair of materials, are selected to define a edge signature. The bands that form the edge signature are fed into a spatial mask, producing a sparse joint spatiospectral nonlinear operator. The first algorithm achieves edge detection for every material pair by matching the response of the operator at every pixel with the edge signature for the pair of materials. The second algorithm is a classifier-enhanced extension of the first algorithm that adaptively accentuates distinctive features before applying the spatiospectral operator. Both algorithms are extensively verified using spectral imagery from the airborne hyperspectral imager and from a dots-in-a-well midinfrared imager. In both cases, the multicolor gradient (MCG) and the hyperspectral/spatial detection of edges (HySPADE) edge detectors are used as a benchmark for comparison. The results demonstrate that the proposed algorithms outperform the MCG and HySPADE edge detectors in accuracy, especially when isoluminant edges are present. By requiring only a few bands as input to the spatiospectral operator, the algorithms enable significant levels of data compression in band selection. In the presented examples, the required operations per pixel are reduced by a factor of 71 with respect to those required by the MCG edge detector

    Generating a Schr\"odinger-cat-like state via a coherent superposition of photonic operations

    Get PDF
    We propose an optical scheme to generate a superposition of coherent states with enhanced size adopting an interferometric setting at the single-photon level currently available in the laboratory. Our scheme employs a nondegenerate optical parametric amplifier together with two beam splitters so that the detection of single photons at the output conditionally implements the desired superposition of second-order photonic operations. We analyze our proposed scheme by considering realistic on-off photodetectors with nonideal efficiency in heralding the success of conditional events. A high-quality performance of our scheme is demonstrated in view of various criteria such as quantum fidelity, mean output energy, and measure of quantum interference

    Mixed-State Entanglement and Quantum Teleportation through Noisy Channels

    Full text link
    The quantum teleportation with noisy EPR state is discussed. Using an optimal decomposition technique, we compute the concurrence, entanglement of formation and Groverian measure for various noisy EPR resources. It is shown analytically that all entanglement measures reduce to zero when Fˉ≀2/3\bar{F} \leq 2/3, where Fˉ\bar{F} is an average fidelity between Alice and Bob. This fact indicates that the entanglement is a genuine physical resource for the teleportation process. This fact gives valuable clues on the optimal decomposition for higher-qubit mixed states. As an example, the optimal decompositions for the three-qubit mixed states are discussed by adopting a teleportation with W-stateComment: 18 pages, 4 figure

    Autotrophic and Heterotrophic Growth Conditions Modify Biomolecole Production in the Microalga Galdieria sulphuraria (Cyanidiophyceae, Rhodophyta)

    Get PDF
    Algae have multiple similarities with fungi, with both belonging to the Thallophyte, a polyphyletic group of non-mobile organisms grouped together on the basis of similar characteristics, but not sharing a common ancestor. The main difference between algae and fungi is noted in their metabolism. In fact, although algae have chlorophyll-bearing thalloids and are autotrophic organisms, fungi lack chlorophyll and are heterotrophic, not able to synthesize their own nutrients. However, our studies have shown that the extremophilic microalga Galderia sulphuraria (GS) can also grow very well in heterotrophic conditions like fungi. This study was carried out using several approaches such as scanning electron microscope (SEM), gas chromatography/mass spectrometry (GC/MS), and infrared spectrophotometry (ATR-FTIR). Results showed that the GS, strain ACUF 064, cultured in autotrophic (AGS) and heterotrophic (HGS) conditions, produced different biomolecules. In particular, when grown in HGS, the algae (i) was 30% larger, with an increase in carbon mass that was 20% greater than AGS; (ii) produced higher quantities of stearic acid, oleic acid, monounsaturated fatty acids (MUFAs), and ergosterol; (iii) produced lower quantities of fatty acid methyl esters (FAMEs) such as methyl palmytate, and methyl linoleate, saturated fatty acids (SFAs), and poyliunsaturated fatty acids (PUFAs). ATR-FTIR and principal component analysis (PCA) statistical analysis confirmed that the macromolecular content of HGS was significantly different from AGS. The ability to produce different macromolecules by changing the trophic conditions may represent an interesting strategy to induce microalgae to produce different biomolecules that can find applications in several fields such as food, feed, nutraceutical, or energy production

    AGN Black Hole Masses and Bolometric Luminosities

    Get PDF
    Black hole mass, along with mass accretion rate, is a fundamental property of active galactic nuclei. Black hole mass sets an approximate upper limit to AGN energetics via the Eddington limit. We collect and compare all AGN black hole mass estimates from the literature; these 177 masses are mostly based on the virial assumption for the broad emission lines, with the broad-line region size determined from either reverberation mapping or optical luminosity. We introduce 200 additional black hole mass estimates based on properties of the host galaxy bulges, using either the observed stellar velocity dispersion or using the fundamental plane relation to infer σ\sigma; these methods assume that AGN hosts are normal galaxies. We compare 36 cases for which black hole mass has been generated by different methods and find, for individual objects, a scatter as high as a couple of orders of magnitude. The less direct the method, the larger the discrepancy with other estimates, probably due to the large scatter in the underlying correlations assumed. Using published fluxes, we calculate bolometric luminosities for 234 AGNs and investigate the relation between black hole mass and luminosity. In contrast to other studies, we find no significant correlation of black hole mass with luminosity, other than those induced by circular reasoning in the estimation of black hole mass. The Eddington limit defines an approximate upper envelope to the distribution of luminosities, but the lower envelope depends entirely on the sample of AGN included. For any given black hole mass, there is a range in Eddington ratio of up to three orders of magnitude.Comment: 43 pages with 10 figures. Accepted for publication in Ap

    Correlation of a-Amylase Inhibitor Content in Eastern Soft Wheats with Development Parameters of the Rice Weevil (Coleoptera: Curculionidae)

    Get PDF
    The a-amylase inhibitor content in saline extracts of 104 Eastern soft wheat cultivars was determined by assay against a purified a-amylase preparation from the rice weevil, Sitophilus oryzae (L.). A two-fold range of inhibitor levels, expressed as amylase inhibitor units per gram of dry weight (AID/g), was found across all cultivars. Inhibitory activity was lowest in cultivar \u27Augusta\u27 (5,084 ± 124 AIU/g) and highest in cultivar \u27Logan\u27 (10,410 ± 61 AID/g). No correlation of inhibitor content with progeny production (r = -0.161) or rate of emergence (r = -0.292) was found among weevils reared on 30 cultivars having relatively low, medium, and high inhibitor levels, but there was a positive correlation between inhibitor content and average number of days to adult emergence (r = 0.569). Although mean development times were significantly different on cultivars with low and high AIU/g (35.9 ± 0.2 and 36.6 ± 0.1 d, respectively), the differences were only slight and indicated that, for these cultivars of soft wheats, a-amylase inhibitors have little practical effect on initial population reductions. Nevertheless, based on a population model for S. oryzae developing on wheat at 25°C and 75% RH, the slight delay in mean development time (0.7 d) on cultivars with relatively high AIU/g results in a 20.9% reduction in total number of weevils after 180 d. Simulations also indicate that physical or biochemical resistance factors in wheat have to delay development time for about 6.2 d or reduce fecundity by about 40% to prevent wheat from being graded weevily 180 d after a single pair of weevils infests a hypothetical 6,000-bushel wheat bin
    • 

    corecore