591 research outputs found

    Simple digital quantum algorithm for symmetric first order linear hyperbolic systems

    Full text link
    This paper is devoted to the derivation of a digital quantum algorithm for the Cauchy problem for symmetric first order linear hyperbolic systems, thanks to the reservoir technique. The reservoir technique is a method designed to avoid artificial diffusion generated by first order finite volume methods approximating hyperbolic systems of conservation laws. For some class of hyperbolic systems, namely those with constant matrices in several dimensions, we show that the combination of i) the reservoir method and ii) the alternate direction iteration operator splitting approximation, allows for the derivation of algorithms only based on simple unitary transformations, thus perfectly suitable for an implementation on a quantum computer. The same approach can also be adapted to scalar one-dimensional systems with non-constant velocity by combining with a non-uniform mesh. The asymptotic computational complexity for the time evolution is determined and it is demonstrated that the quantum algorithm is more efficient than the classical version. However, in the quantum case, the solution is encoded in probability amplitudes of the quantum register. As a consequence, as with other similar quantum algorithms, a post-processing mechanism has to be used to obtain general properties of the solution because a direct reading cannot be performed as efficiently as the time evolution.Comment: 28 pages, 12 figures, major rewriting of the section describing the numerical method, simplified the presentation and notation, reorganized the sections, comments are welcome

    Range Nutrition in an Arid Region

    Get PDF
    On the mountains, in the valleys, on the foothills and on the deserts of the Intermountain West grow millions of tons of vegetation. The chemical energy stored bv these plants is a potential source of useful energy for man. Some of the plant material has been used for fuel, other has been used as a source of lumber, chemicals, and paper, but the major part of this vast reservO\u27ir is useful to man because it is utilized by livestock. This native vegetation is grazed by livestock and they convert the plant energy to\u27 high quality, desirable food energy for man

    Thermo-Piezo-Electro-Mechanical Simulation of AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) High Electron Mobility Transistor

    Get PDF
    Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by piezoelectric effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both piezoelectric materials). This piezoelectric effect can be triggered by voltage applied to the device\u27s gate contact and the existence of an HEMT-unique two-dimensional electron gas (2DEG) at the GaN-AlGaN interface. COMSOL Multiphysics computer software has been utilized to create a finite element (i.e. piece-by-piece) simulation to visualize both temperature and stress/strain distributions that can occur in the device, by coupling together (i.e. solving simultaneously) the thermal, electrical, structural, and piezoelectric effects inherent in the device. The 2DEG has been modeled not with the typically-used self-consistent quantum physics analytical equations, rather as a combined localized heat source* (thermal) and surface charge density* (electrical) boundary condition. Critical values of stress/strain and their respective locations in the device have been identified. Failure locations have been estimated based on the critical values of stress and strain, and compared with reports in literature. The knowledge of the overall stress/strain distribution has assisted in determining the likely device failure mechanisms and possible mitigation approaches. The contribution and interaction of individual stress mechanisms including piezoelectric effects and thermal expansion caused by device self-heating (i.e. fast-moving electrons causing heat) have been quantified. * Values taken from results of experimental studies in literatur

    Junior Recital: Lorin Green, flute and piccolo

    Get PDF
    This recital is presented in partial fulfillment of requirements for the degree Bachelor of Music in Performance. Ms. Green studies flute with Christina Smith and piccolo with Kelly Bryant.https://digitalcommons.kennesaw.edu/musicprograms/2149/thumbnail.jp

    State of Harmonization of 24 Serum Albumin Measurement Procedures and Implications for Medical Decisions

    Get PDF
    BACKGROUND: Measurements of serum and plasma albumin are widely used in medicine, including as indicators of quality of patient care in renal dialysis centers. METHODS: Pools were prepared from residual patient serum (n = 50) and heparin plasma (n = 48) from patients without renal disease, and serum from patients with kidney failure before hemodialysis (n = 53). Albumin was measured in all samples and in ERM-DA470k/IFCC reference material (RM) by 3 immunochemical, 9 bromcresol green (BCG), and 12 bromcresol purple (BCP) methods. RESULTS: Two of 3 immunochemical procedures, 5 of 9 BCG, and 10 of 12 BCP methods recovered the RM value within its uncertainty. One immunochemical and 3 BCG methods were biased vs the RM value. Random error components were small for all measurement procedures. The Tina-quant immunochemical method was chosen as the reference measurement procedure based on recovery and results of error analyses. Mean biases for BCG vs Tina-quant were 1.5% to 13.9% and were larger at lower albumin concentrations. BCP methods\u27 mean biases were -5.4% to 1.2% irrespective of albumin concentration. Biases for plasma samples were generally higher than for serum samples for all method types. For most measurement procedures, biases were lower for serum from patients on hemodialysis vs patients without kidney disease. CONCLUSIONS: Significant differences among immunochemical, BCG, and BCP methods compromise interpretation of serum. albumin results. Guidelines and calculations for clinical management of kidney and other diseases must consider the method used for albumin measurement until harmonization can be achieved

    Bulletin No. 472 - Nutritive Value of Seasonal Ranges

    Get PDF
    Considerable information has been presented on the nutritive value of domestic crops but little is known about the nutritive content of range forage. Such information is fundamental to the management of ranges for effective livestock production. The shortage of suitable spring range in the Intermountain region has caused increased interest in seeding depleted foothill areas to supply more spring forage. Many native foothill ranges with established stands of perennial grasses sufficient to show rapid response to conservative use may be more economically developed through better management practices. In any event, knowledge of forage production, palatability, and nutritive value of both native foothill species and introduced species is needed. It is generally believed that mountain ranges furnish adequate nutrients for the normal requirements of livestock throughout the summer except perhaps late in the season. Desert ranges normally used for winter grazing are composed primarily of grass and browse species in varying quantities. Since these species arc generally dormant during the winter, the nutritive value may be deficient in some essential nutrients
    • …
    corecore