3,250 research outputs found

    Mass transfer characteristics in structured packing for CO2 emission reduction processes

    Get PDF
    Acid gas treating and CO2 capture from flue gas by absorption have gained wide importance over the past few decades. With the implementation of more stringent environmental regulations and the awareness of the greenhouse effect, the need for efficient removal of acid gases such as CO2 (carbon dioxide) has increased significantly. Therefore, additional effort for research in this field is inevitable. For flue gas processes the ratio of absorption solvent to gas throughput is very different compared to acid gas treating processes owing to the atmospheric pressures and the dilution effect of combustion air. Moreover, in flue gas applications pressure drop is a very important process parameter. Packing types are required that allow for low pressure drop in combination with high interfacial areas at low liquid loading per square meter. The determination of interfacial areas in gas-liquid contactors by means of the chemical method (Danckwerts, P. V. Gas-liquid reactions; McGraw-Hill: London, 1970) has been very frequently applied. Unfortunately, many of the model systems proposed in the literature are reversible and therefore this condition possibly is not met. Versteeg et al. (Versteeg, G. F.; Kuipers, J. A. M.; Beckum, F. P. H.; van Swaaij, W. P. M. Chem. Eng. Sci. 1989, 44, 2292) have demonstrated that for reversible reactions the conditions for the determination of the interfacial area by means of the chemical method are much more severe. In a study by Raynal et al. (Raynal, L.; Ballaguet, J. P.; Berrere-Tricca, C. Chem. Eng. Sci. 2004, 59, 5395), it has been shown that there is a dependency of the interfacial area on the packing height. Unfortunately, most model systems used, e.g., CO2-caustic soda (as used by Raynal et al.), are much more complex and consist of (a set of) reversible reaction(s). The natures of these systems make the conditions at which the interfacial area can be determined much more severe and put more limitations on the process conditions and experimental equipment than a priori can be expected. Therefore, an extended absorption model is required to determine the conditions at which the interfacial area can be measured without detailed knowledge of the values of the liquid-side mass transfer coefficient, k1, beforehand.

    Generation of density inhomogeneities by magnetohydrodynamic waves in two dimensions

    Full text link
    Using two dimensional simulations, we study the formation of structures with a high-density contrast by magnetohydrodynamic waves in regions in which the ratio of thermal to magnetic pressure is small. The initial state is a uniform background perturbed by fast-mode wave. Our most significant result is that dense structures persist for far longer in a two-dimensional simulation than in the one-dimensional case. Once formed, these structures persist as long as the fast-mode amplitude remains high.Comment: 6 pages, 7 figures, accepted by MNRA

    Strong coupling of magnons in a YIG sphere to photons in a planar superconducting resonator in the quantum limit

    Full text link
    We report measurements of a superconducting coplanar waveguide resonator (CPWR) coupled to a sphere of yttrium-iron garnet. The non-uniform CPWR field allows us to excite various magnon modes in the sphere. Mode frequencies and relative coupling strengths are consistent with theory. Strong coupling is observed to several modes even with, on average, less than one excitation present in the CPWR. The time response to square pulses shows oscillations at the mode splitting frequency. These results indicate the feasibility of combining magnonic and planar superconducting quantum devices.Comment: 5 pages, 4 figure

    Shock-triggered formation of magnetically-dominated clouds

    Full text link
    To understand the formation of a magnetically dominated molecular cloud out of an atomic cloud, we follow the dynamical evolution of the cloud with a time-dependent axisymmetric magnetohydrodynamic code. A thermally stable warm atomic cloud is initially in static equilibrium with the surrounding hot ionised gas. A shock propagating through the hot medium interacts with the cloud. As a fast-mode shock propagates through the cloud, the gas behind it becomes thermally unstable. The β\beta value of the gas also becomes much smaller than the initial value of order unity. These conditions are ideal for magnetohydrodynamic waves to produce high-density clumps embedded in a rarefied warm medium. A slow-mode shock follows the fast-mode shock. Behind this shock a dense shell forms, which subsequently fragments. This is a primary region for the formation of massive stars. Our simulations show that only weak and moderate-strength shocks can form cold clouds which have properties typical of giant molecular clouds.Comment: 7 pages, 6 figures, accepted by Astronomy and Astrophysic

    Screening Genes for Association with Loci for Nitrogen-Use Efficiency in Perennial Ryegrass by Pyrosequencing\u3csup\u3eTM\u3c/sup\u3e

    Get PDF
    The application of marker-assisted selection to improve quantitative traits in perennial ryegrass (Lolium perenne) is cumbersome. It requires a priori knowledge on the association of markers and genes. The knowledge on the chromosomal location of major genes for quantitative traits as well as on gene sequences is rapidly growing. However, determination of the genetic constitution of parents prior to their use in breeding still is impractical. More realistic is to collect association data along with the testing activities needed for breeding new varieties. This study uses changes in allele frequency due to selection as a criterion for gene-trait association. Selection-dependent changes are detected with single nucleotide polymorphisms (SNPs) of candidate genes using DNA-pools of F2 plants differing in nitrogen-use efficiency (NUE). The procedure and its feasibility are outlined for one locus

    Magnetic Fields and Star Formation

    Full text link
    Research performed in the 1950s and 1960s by Leon Mestel on the roles of magnetic fields in star formation established the framework within which he and other key figures have conducted subsequent investigations on the subject. This short tribute to Leon contains a brief summary of some, but not all, of his ground breaking contributions in the area. It also mentions of some of the relevant problems that have received attention in the last few years. The coverage is not comprehensive, and the authors have drawn on their own results more and touched more briefly on those of others than they would in a normal review. Theirs is a personal contribution to the issue honouring Leon, one of the truly great gentlemen, wits, and most insightful of astrophysicists.Comment: 13 pages, no figures, to be published in Astronomy and Geophysic
    corecore