2,232 research outputs found

    On Conserved Current in Markovian Open Quantum Systems

    Get PDF
    We reexamine the markovian approximation of local current in open quantum systems, discussed recently by Gebauer and Car. Our derivation is more transparent, the proof of current conservation becomes explicit and easy.Comment: 3 page

    Classical Correlations and Entanglement in Quantum Measurements

    Get PDF
    We analyze a quantum measurement where the apparatus is initially in a mixed state. We show that the amount of information gained in a measurement is not equal to the amount of entanglement between the system and the apparatus, but is instead equal to the degree of classical correlations between the two. As a consequence, we derive an uncertainty-like expression relating the information gain in the measurement and the initial mixedness of the apparatus. Final entanglement between the environment and the apparatus is also shown to be relevant for the efficiency of the measurement.Comment: to appear in Physical Review Letter

    Simple Non Linear Klein-Gordon Equations in 2 space dimensions, with long range scattering

    Full text link
    We establish that solutions, to the most simple NLKG equations in 2 space dimensions with mass resonance, exhibits long range scattering phenomena. Modified wave operators and solutions are constructed for these equations. We also show that the modified wave operators can be chosen such that they linearize the non-linear representation of the Poincar\'e group defined by the NLKG.Comment: 19 pages, LaTeX, To appear in Lett. Math. Phy

    Relational physics with real rods and clocks and the measurement problem of quantum mechanics

    Get PDF
    The use of real clocks and measuring rods in quantum mechanics implies a natural loss of unitarity in the description of the theory. We briefly review this point and then discuss the implications it has for the measurement problem in quantum mechanics. The intrinsic loss of coherence allows to circumvent some of the usual objections to the measurement process as due to environmental decoherence.Comment: 19 pages, RevTex, no figure

    Correlations in optically-controlled quantum emitters

    Full text link
    We address the problem of optically controlling and quantifying the dissipative dynamics of quantum and classical correlations in a set-up of individual quantum emitters under external laser excitation. We show that both types of correlations, the former measured by the quantum discord, are present in the system's evolution even though the emitters may exhibit an early stage disentanglement. In the absence of external laser pumping,we demonstrate analytically, for a set of suitable initial states, that there is an entropy bound for which quantum discord and entanglement of the emitters are always greater than classical correlations, thus disproving an early conjecture that classical correlations are greater than quantum correlations. Furthermore, we show that quantum correlations can also be greater than classical correlations when the system is driven by a laser field. For scenarios where the emitters' quantum correlations are below their classical counterparts, an optimization of the evolution of the quantum correlations can be carried out by appropriately tailoring the amplitude of the laser field and the emitters' dipole-dipole interaction. We stress the importance of using the entanglement of formation, rather than the concurrence, as the entanglement measure, since the latter can grow beyond the total correlations and thus give incorrect results on the actual system's degree of entanglement.Comment: 11 pages, 10 figures, this version contains minor modifications; to appear in Phys. Rev.

    Kinematic approach to the mixed state geometric phase in nonunitary evolution

    Full text link
    A kinematic approach to the geometric phase for mixed quantal states in nonunitary evolution is proposed. This phase is manifestly gauge invariant and can be experimentally tested in interferometry. It leads to well-known results when the evolution is unitary.Comment: Minor changes; journal reference adde

    Quantum decoherence in the theory of open systems

    Full text link
    In the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We calculate also the decoherence time scale and analyze the transition from quantum to classical behaviour of the considered system.Comment: 6 pages; talk at the 3rd International Workshop "Quantum Physics and Communication" (QPC 2005), Dubna, Russia, 200

    Pure Stationary States of Open Quantum Systems

    Full text link
    Using Liouville space and superoperator formalism we consider pure stationary states of open and dissipative quantum systems. We discuss stationary states of open quantum systems, which coincide with stationary states of closed quantum systems. Open quantum systems with pure stationary states of linear oscillator are suggested. We consider stationary states for the Lindblad equation. We discuss bifurcations of pure stationary states for open quantum systems which are quantum analogs of classical dynamical bifurcations.Comment: 7p., REVTeX

    Quantum decoherence of the damped harmonic oscillator

    Get PDF
    In the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We also calculate the decoherence time and show that it has the same scale as the time after which thermal fluctuations become comparable with quantum fluctuations.Comment: Talk at the XI International Conference on Quantum Optics (ICQO'2006), May 2006, Minsk (Belarus), 9 page

    A Discrete Four Stroke Quantum Heat Engine Exploring the Origin of Friction

    Get PDF
    The optimal power performance of a first principle quantum heat engine model shows friction-like phenomena when the internal fluid Hamiltonian does not commute with the external control field. The model is based on interacting two-level-systems where the external magnetic field serves as a control variable.Comment: 4 pages 3 figure
    corecore