508 research outputs found

    Crystal Growth in the Presence of Surface Melting: Novel Behavior of the Principal Facets of Ice

    Get PDF
    We present measurements of the growth rates of the principal facet surfaces of ice from water vapor as a function of supersaturation over the temperature range -2 C > T > -40 C. Our data are well described by a dislocation-free layer-nucleation model, parameterized by the attachment coefficient as a function of supersaturation \alpha(\sigma) = Aexp(-\sigma_0/\sigma). The measured parameters A(T) and \sigma_0(T) for the basal and prism facets exhibit a complex behavior that likely originates from structural changes in the ice surface with temperature, in particular the onset and development of surface melting for T > -15 C. From \sigma_0(T) we extract the terrace step energy \beta(T) as a function of temperature for both facet surfaces. As a basic property of the equilibrium ice surface, the step energy \beta(T) may be amenable to calculation using molecular dynamics simulations, potentially yielding new insights into the enigmatic surface structure of ice near the triple point

    Measurements of Growth Rates of (0001) Ice Crystal Surfaces

    Get PDF
    We present measurements of growth rates of the (0001) facet surface of ice as a function of water vapor supersaturation over the temperature range 2-2 T40\geq T\geq -40 C. From these data we infer the temperature dependence of premelting on the basal surface and the effects of premelting on the ice growth dynamics. Over this entire temperature range the growth was consistent with a simple 2D nucleation model, allowing a measurement of the critical supersaturation σ0(T)\sigma _{0}(T) as a function of temperature. We find that the 2D nucleation barrier is substantially diminished when the premelted layer is partially developed, as indicated by a reduced σ0,\sigma _{0}, while the barrier is higher both when the premelted layer is fully absent or fully developed

    A basic lock-in amplifier experiment for the undergraduate laboratory

    Get PDF
    We describe a basic experiment for the undergraduate laboratory that demonstrates aspects of both, the science and the art of precision electronic measurements. The essence of the experiment is to measure the resistance of a small length of brass-wire to high accuracy using a simple voltage divider and a lock-in amplifier. By performing the measurement at different frequencies and different drive currents, one observes various random noise sources and systematic measurement effects

    Macroscopic coherence effects in a mesoscopic system: Weak localization of thin silver films in an undergraduate lab

    Get PDF
    We present an undergraduate lab that investigates weak localization in thin silver films. The films prepared in our lab have thickness, aa, between 60-200 \AA, a mesoscopic length scale. At low temperatures, the inelastic dephasing length for electrons, LϕL_{\phi}, exceeds the thickness of the film (LϕaL_{\phi} \gg a), and the films are then quasi-2D in nature. In this situation, theory predicts specific corrections to the Drude conductivity due to coherent interference between conducting electrons' wavefunctions, a macroscopically observable effect known as weak localization. This correction can be destroyed with the application of a magnetic field, and the resulting magnetoresistance curve provides information about electron transport in the film. This lab is suitable for Junior or Senior level students in an advanced undergraduate lab course.Comment: 16 pages, 9 figures. Replaces earlier version of paper rejected by Am. J. Phys. because of too much content on vacuum systems. New version deals with the undergraduate experiment on weak localization onl

    Mechanisms of Dendrites Occurrence during Crystallization: Features of the Ice Crystals Formation

    Full text link
    Dendrites formation in the course of crystallization presents very general phenomenon, which is analyzed in details via the example of ice crystals growth in deionized water. Neutral molecules of water on the surface are combined into the double electric layer (DEL) of oriented dipoles; its field reorients approaching dipoles with observable radio-emission in the range of 150 kHz. The predominant attraction of oriented dipoles to points of gradients of this field induces dendrites growth from them, e.g. formation of characteristic form of snowflakes at free movement of clusters through saturated vapor in atmosphere. The constant electric field strengthens DELs' field and the growth of dendrites. Described phenomena should appear at crystallization of various substances with dipole molecules, features of radio-emission can allow the monitoring of certain processes in atmosphere and in technological processes. Crystallization of particles without constant moments can be stimulated by DELs of another nature with attraction of virtual moments of particles to gradients of fields and corresponding dendrites formation.Comment: 6 page

    Measurement of Thermal Noise in Multilayer Coatings with Optimized Layer Thickness

    Get PDF
    A standard quarter-wavelength multilayer optical coating will produce the highest reflectivity for a given number of coating layers, but in general it will not yield the lowest thermal noise for a prescribed reflectivity. Coatings with the layer thicknesses optimized to minimize thermal noise could be useful in future generation interferometric gravitational wave detectors where coating thermal noise is expected to limit the sensitivity of the instrument. We present the results of direct measurements of the thermal noise of a standard quarter-wavelength coating and a low noise optimized coating. The measurements indicate a reduction in thermal noise in line with modeling predictions.Comment: 8 pages, 14 figure

    Numerical computations of facetted pattern formation in snow crystal growth

    Get PDF
    Facetted growth of snow crystals leads to a rich diversity of forms, and exhibits a remarkable sixfold symmetry. Snow crystal structures result from diffusion limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics. It is by now well understood that the morphological stability of ice crystals strongly depends on supersaturation, crystal size and temperature. Until very recently it was very difficult to perform numerical simulations of this highly anisotropic crystal growth. In particular, obtaining facet growth in combination with dendritic branching is a challenging task. We present numerical simulations of snow crystal growth in two and three space dimensions using a new computational method recently introduced by the authors. We present both qualitative and quantitative computations. In particular, a linear relationship between tip velocity and supersaturation is observed. The computations also suggest that surface energy effects, although small, have a larger effect on crystal growth than previously expected. We compute solid plates, solid prisms, hollow columns, needles, dendrites, capped columns and scrolls on plates. Although all these forms appear in nature, most of these forms are computed here for the first time in numerical simulations for a continuum model.Comment: 12 pages, 28 figure

    Coulomb Distortion of Pion Spectra from Heavy-Ion Collisions

    Get PDF
    The effects of final-state π-nucleus electromagnetic interactions in heavy-ion collisions are investigated in a covariant classical formulation. Experimentally observed mid-rapidity peaks in π+ spectra are reproduced by a simple model and are shown to be sensitive to the gross features of the time-dependent nuclear charge distribution
    corecore