1,028 research outputs found

    Quark-Gluon Plasma Fireball

    Full text link
    Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb--Pb interactions.Comment: 10 pages, 9 postscript figures, 1 table, uses revtex, V3: introduced difference between n_f and n_s; fireball restframe energy corrected, references added. Publisched version in press Phys. Rev.

    A model for the time uncertainty measurements in the Auger surface detector array

    Full text link
    The precise determination of the arrival direction of cosmic rays is a fundamental prerequisite for the search for sources or the study of their anisotropies on the sky. One of the most important aspects to achieve an optimal measurement of these directions is to properly take into account the measurement uncertainties in the estimation procedure. In this article we present a model for the uncertainties associated with the time measurements in the Auger surface detector array. We show that this model represents well the measurement uncertainties and therefore provides the basis for an optimal determination of the arrival direction. With this model and a description of the shower front geometry it is possible to estimate, on an event by event basis, the uncertainty associated with the determination of the arrival directions of the cosmic rays

    Heavy Flavor Hadrons in Statistical Hadronization of Strangeness-rich QGP

    Get PDF
    We study b, c quark hadronization from QGP. We obtain the yields of charm and bottom flavored hadrons within the statistical hadronization model. The important novel feature of this study is that we take into account the high strangeness and entropy content of QGP, conserving strangeness and entropy yields at hadronization.Comment: v2 expended: 20 pages, 23 figures, 5 tables, in press EPJ-

    Observing Quark-Gluon Plasma with Strange Hadrons

    Full text link
    We review the methods and results obtained in an analysis of the experimental heavy ion collision research program at nuclear beam energy of 160-200A GeV. We study strange, and more generally, hadronic particle production experimental data. We discuss present expectations concerning how these observables will perform at other collision energies. We also present the dynamical theory of strangeness production and apply it to show that it agrees with available experimental results. We describe strange hadron production from the baryon-poor quark-gluon phase formed at much higher reaction energies, where the abundance of strange baryons and antibaryons exceeds that of nonstrange baryons and antibaryons.Comment: 39 journal pages (155kb text), 8 postscript figures, 8 table

    Rapidity particle spectra in sudden hadronization of QGP

    Get PDF
    We show that the remaining internal longitudinal flow of colliding quarks in nuclei offers a natural explanation for the diversity of rapidity spectral shapes observed in Pb--Pb 158AGeV nuclear collisions. Thus QGP sudden hadronization reaction picture is a suitable approach to explain the rapidity spectra of hadrons produced.Comment: 3 pages including 2 figure

    Strangeness and the discovery of quark-gluon plasma

    Full text link
    Strangeness flavor yield s and the entropy yield S are the observables of the deconfined quark-gluon state of matter which can be studied in the entire available experimental energy range at AGS, SPS, RHIC, and, in near future, at the LHC energy range. We present here a comprehensive analysis of strange, soft hadron production as function of energy and reaction volume. We discuss the physical properties of the final state and argue how evidence about the primordial QGP emerges.Comment: 16 pages: Invited talk at 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, February 8 - 12, 2005, Salt Lake City, Kolkata, India, to appear in: Journal of Physics: Conference Serie

    Chemical Nonequilibrium in High Energy Nuclear Collisions

    Get PDF
    Strange particles produced in S-Au/W/Pb 200 A GeV and Pb-Pb 158 A GeV reactions are described invoking final hadronic phase space in thermal equilibrium, but allowing chemical non-equilibrium. Several sets of statistical freeze-out parameters are obtained for each system, invoking different models of dense matter. We show that only when allowing for strange and non-strange flavor abundance non-equilibrium, a statistically significant description of the experimental results is obtained. Physical properties of the fireball at chemical freeze-out condition are evaluated and considerable universality of hadron freeze-out between the two different collision systems is established. The relevance of the Coulomb effect in the highly charged Pb-Pb fireballs for the chemical analysis are discussed. The influence of explosive collective matter flow is also described.Comment: Presented at the International Conference Strangeness in Quark Matter held in Padova, July 1998 To appear in: Journal of Physics G 16 pages incl. one figure; v2: minor typos correcte

    Strangeness Conservation in Hot Nuclear Fireballs

    Full text link
    A constraint between thermal fireball parameters arises from the requirement that the balance of strangeness in a fireball is (nearly) zero. We study the impact of this constraint on (multi-)strange (anti-)baryon multiplicities and compare the hadron gas and quark-gluon plasma predictions. We explore the relation between the entropy content and particle multiplicities and show that the data are compatible with the quark-gluon plasma hypothesis, but appear to be inconsistent with the picture of an equilibrated hadron gas fireball. We consider the implications of the results on the dynamics of evolution and decay of the particle source.Comment: 35 pages, 11 postscript figures, report PAR/LPTHE/92--2

    Unstable Hadrons in Hot Hadron Gas in Laboratory and in the Early Universe

    Full text link
    We study kinetic master equations for chemical reactions involving the formation and the natural decay of unstable particles in a thermal bath. We consider the decay channel of one into two particles, and the inverse process, fusion of two thermal particles into one. We present the master equations the evolution of the density of the unstable particles in the early Universe. We obtain the thermal invariant reaction rate using as an input the free space (vacuum) decay time and show the medium quantum effects on π+πρ\pi+\pi \leftrightarrow \rho reaction relaxation time. As another laboratory example we describe the K+KϕK+K \leftrightarrow \phi process in thermal hadronic gas in heavy-ion collisions. A particularly interesting application of our formalism is the π0γ+γ\pi^{0}\leftrightarrow \gamma +\gamma process in the early Universe. We also explore the physics of π±\pi^{\pm} and μ±\mu^{\pm} freeze-out in the Universe.Comment: 13 pages, 9 figures, published in Physical Review

    UHE tau neutrino flux regeneration while skimming the Earth

    Full text link
    The detection of Earth-skimming tau neutrinos has turned into a very promising strategy for the observation of ultra-high energy cosmic neutrinos. The sensitivity of this channel crucially depends on the parameters of the propagation of the tau neutrinos through the terrestrial crust, which governs the flux of emerging tau leptons that can be detected. One of the characteristics of this propagation is the possibility of regeneration through multiple νττ\nu_\tau \leftrightarrow \tau conversions, which are often neglected in the standard picture. In this paper, we solve the transport equations governing the ντ\nu_\tau propagation and compare the flux of emerging tau leptons obtained allowing regeneration or not. We discuss the validity of the approximation of neglecting the ντ\nu_\tau regeneration using different scenarios for the neutrino-nucleon cross-sections and the tau energy losses.Comment: 8 pages, 8 figure
    corecore