721 research outputs found

    Depinning of kinks in a Josephson-junction ratchet array

    Full text link
    We have measured the depinning of trapped kinks in a ratchet potential using a fabricated circular array of Josephson junctions. Our ratchet system consists of a parallel array of junctions with alternating cell inductances and junctions areas. We have compared this ratchet array with other circular arrays. We find experimentally and numerically that the depinning current depends on the direction of the applied current in our ratchet ring. We also find other properties of the depinning current versus applied field, such as a long period and a lack of reflection symmetry, which we can explain analytically.Comment: to be published in PR

    Minority and mode conversion heating in (3He)-H JET plasma

    Get PDF
    Radio frequency (RF) heating experiments have recently been conducted in JET (He-3)-H plasmas. This type of plasmas will be used in ITER's non-activated operation phase. Whereas a companion paper in this same PPCF issue will discuss the RF heating scenario's at half the nominal magnetic field, this paper documents the heating performance in (He-3)-H plasmas at full field, with fundamental cyclotron heating of He-3 as the only possible ion heating scheme in view of the foreseen ITER antenna frequency bandwidth. Dominant electron heating with global heating efficiencies between 30% and 70% depending on the He-3 concentration were observed and mode conversion (MC) heating proved to be as efficient as He-3 minority heating. The unwanted presence of both He-4 and D in the discharges gave rise to 2 MC layers rather than a single one. This together with the fact that the location of the high-field side fast wave (FW) cutoff is a sensitive function of the parallel wave number and that one of the locations of the wave confluences critically depends on the He-3 concentration made the interpretation of the results, although more complex, very interesting: three regimes could be distinguished as a function of X[He-3]: (i) a regime at low concentration (X[He-3] < 1.8%) at which ion cyclotron resonance frequency (ICRF) heating is efficient, (ii) a regime at intermediate concentrations (1.8 < X[He-3] < 5%) in which the RF performance is degrading and ultimately becoming very poor, and finally (iii) a good heating regime at He-3 concentrations beyond 6%. In this latter regime, the heating efficiency did not critically depend on the actual concentration while at lower concentrations (X[He-3] < 4%) a bigger excursion in heating efficiency is observed and the estimates differ somewhat from shot to shot, also depending on whether local or global signals are chosen for the analysis. The different dynamics at the various concentrations can be traced back to the presence of 2 MC layers and their associated FW cutoffs residing inside the plasma at low He-3 concentration. One of these layers is approaching and crossing the low-field side plasma edge when 1.8 < X[He-3] < 5%. Adopting a minimization procedure to correlate the MC positions with the plasma composition reveals that the different behaviors observed are due to contamination of the plasma. Wave modeling not only supports this interpretation but also shows that moderate concentrations of D-like species significantly alter the overall wave behavior in He-3-H plasmas. Whereas numerical modeling yields quantitative information on the heating efficiency, analytical work gives a good description of the dominant underlying wave interaction physics

    Salerno's model of DNA reanalysed: could solitons have biological significance?

    Full text link
    We investigate the sequence-dependent behaviour of localised excitations in a toy, nonlinear model of DNA base-pair opening originally proposed by Salerno. Specifically we ask whether ``breather'' solitons could play a role in the facilitated location of promoters by RNA polymerase. In an effective potential formalism, we find excellent correlation between potential minima and {\em Escherichia coli} promoter recognition sites in the T7 bacteriophage genome. Evidence for a similar relationship between phage promoters and downstream coding regions is found and alternative reasons for links between AT richness and transcriptionally-significant sites are discussed. Consideration of the soliton energy of translocation provides a novel dynamical picture of sliding: steep potential gradients correspond to deterministic motion, while ``flat'' regions, corresponding to homogeneous AT or GC content, are governed by random, thermal motion. Finally we demonstrate an interesting equivalence between planar, breather solitons and the helical motion of a sliding protein ``particle'' about a bent DNA axis.Comment: Latex file 20 pages, 5 figures. Manuscript of paper to appear in J. Biol. Phys., accepted 02/09/0

    Sawtooth pacing with on-axis ICRH modulation in JET-ILW

    Get PDF
    A novel technique for sawteeth control in tokamak plasmas using ion-cyclotron resonance heating (ICRH) has been developed in the JET-ILW tokamak. Unlike previous ICRH methods, that explored the destabilization of the internal kink mode when the radio-frequency (RF) wave absorption was placed near the q = 1 surface, the technique presented here consists of stabilizing the sawteeth as fast as possible by applying the ICRH power centrally and subsequently induce a sawtooth crash by switching it off at the appropriate instant. The validation of this method in JET-ILW L-mode discharges, including preliminary tests in H-mode plasmas, is presented

    Statistical assessment of ELM triggering by pellets on JET

    Get PDF
    © 2021 IAEA, Vienna. This article investigates the triggering of ELMs on JET by injection of frozen pellets of isotopes of Hydrogen. A method is established to determine the probability that a specific pellet triggers a particular ELM. This method allows clear distinction between pellet-ELM pairs that are very likely to represent triggering events and pairs that are very unlikely to represent such an event. Based on this, the pellet parameters that are most likely to affect the ability of pellets to trigger ELMs have been investigated. It has been found that the injection location is very important, with injection from the vertical high field side showing a much higher triggering efficiency than low field side (LFS) injection. The dependence on parameters such as pellet speed and size and the time since the last ELM is also seen to be much stronger for LFS injection. Finally, the paper illustrates how improvements to the pellet injection system by streamlining the pellet flight lines and slightly increasing the pellet size has resulted in a significantly improved ability to deliver pellets to the plasma and trigger ELMs.s
    • …
    corecore