53 research outputs found

    Mental turmoil, suicide risk, illness perception, and temperament, and their impact on quality of life in chronic daily headache

    Get PDF
    To evaluate the relationship among quality of life, temperament, illness perception, and mental turmoil in patients affected by chronic daily headache with concomitant medication overuse headache. Participants were 116 consecutive adult outpatients admitted to the Department of General Medicine of the Sant’Andrea Hospital in Rome, between January 2007 and December 2007 with a diagnosis of chronic daily headache (illness duration >5 years). Patients were administered the Temperament Evaluation of Memphis, Pisa, Paris and San Diego-autoquestionnaire version (TEMPS-A), the Beck Hopelessness Scale (BHS), the Hamilton Rating Scale for Depression (HAM-D), the Mini-International Neuropsychiatric Interview (MINI), the Revised Illness Perception Questionnaire (IPQ), the Suicide Score Scale (SSS), and the Quality of Life Index (QL-Index). Twenty-eight percent of the patients evidenced moderate to severe depression, and 35% evidenced severe hopelessness. Analyses also indicated that quality of life, temperament, illness perception, and psychological turmoil are associated. However, a hierarchical multivariate regression analysis with quality of life as dependent variable indicated that only a model with mental turmoil variables may fit data; further, only the MINI suicidal intent resulted associated with quality of life (standardized regression coefficient = −0.55; t = −3.06; P < 0.01). Suicide risk may play a central role in affecting the quality of life of patients with chronic headache. The investigation of the interplay of factors that precipitate suicide risk should include assessment of chronic headache and its effects on wellbeing

    Quantification of resting myocardial blood flow velocity in normal humans using real-time contrast echocardiography. A feasibility study

    Get PDF
    BACKGROUND: Real-time myocardial contrast echocardiography (MCE) is a novel method for assessing myocardial perfusion. The aim of this study was to evaluate the feasibility of a very low-power real-time MCE for quantification of regional resting myocardial blood flow (MBF) velocity in normal human myocardium. METHODS: Twenty study subjects with normal left ventricular (LV) wall motion and normal coronary arteries, underwent low-power real-time MCE based on color-coded pulse inversion Doppler. Standard apical LV views were acquired during constant IV. infusion of SonoVue(®). Following transient microbubble destruction, the contrast replenishment rate (β), reflecting MBF velocity, was derived by plotting signal intensity vs. time and fitting data to the exponential function; y (t) =A (1-e(-β(t-t0))) + C. RESULTS: Quantification was feasible in 82%, 49% and 63% of four-chamber, two-chamber and apical long-axis view segments, respectively. The LAD (left anterior descending artery) and RCA (right coronary artery) territories could potentially be evaluated in most, but contrast detection in the LCx (left circumflex artery) bed was poor. Depending on localisation and which frames to be analysed, mean values of [Image: see text] were 0.21–0.69 s(-1), with higher values in medial than lateral, and in basal compared to apical regions of scan plane (p = 0.03 and p < 0.01). Higher β-values were obtained from end-diastole than end-systole (p < 0.001), values from all-frames analysis lying between. CONCLUSION: Low-power real-time MCE did have the potential to give contrast enhancement for quantification of resting regional MBF velocity. However, the technique is difficult and subjected to several limitations. Significant variability in β suggests that this parameter is best suited for with-in patient changes, comparing values of stress studies to baseline

    Bone invading NSCLC cells produce IL-7: mice model and human histologic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone metastases are a common and dismal consequence of lung cancer that is a leading cause of death. The role of IL-7 in promoting bone metastases has been previously investigated in NSCLC, but many aspects remain to be disclosed. To further study IL-7 function in bone metastasis, we developed a human-in-mice model of bone aggression by NSCLC and analyzed human bone metastasis biopsies.</p> <p>Methods</p> <p>We used NOD/SCID mice implanted with human bone. After bone engraftment, two groups of mice were injected subcutaneously with A549, a human NSCLC cell line, either close or at the contralateral flank to the human bone implant, while a third control group did not receive cancer cells. Tumor and bone vitality and IL-7 expression were assessed in implanted bone, affected or not by A549. Serum IL-7 levels were evaluated by ELISA. IL-7 immunohistochemistry was performed on 10 human bone NSCLC metastasis biopsies for comparison.</p> <p>Results</p> <p>At 12 weeks after bone implant, we observed osteogenic activity and neovascularization, confirming bone vitality. Tumor aggressive cells implanted close to human bone invaded the bone tissue. The bone-aggressive cancer cells were positive for IL-7 staining both in the mice model and in human biopsies. Higher IL-7 serum levels were found in mice injected with A549 cells close to the bone implant compared to mice injected with A549 cells in the flank opposite to the bone implant.</p> <p>Conclusions</p> <p>We demonstrated that bone-invading cells express and produce IL-7, which is known to promote osteoclast activation and osteolytic lesions. Tumor-bone interaction increases IL-7 production, with an increase in IL-7 serum levels. The presented mice model of bone invasion by contiguous tumor is suitable to study bone-tumor cell interaction. IL-7 plays a role in the first steps of metastatic process.</p

    Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study

    Get PDF
    Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca2+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL) ion currents, accounts for the heterogeneity of intracellular Ca2+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR). Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca2+ dynamics: 1) the biphasic increment during the upstroke of the Ca2+ transient resulting from the delay between the peripheral and central SR Ca2+ release, and 2) the relative contribution of SL Ca2+ current and SR Ca2+ release to the Ca2+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca2+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca2+ release sites define the interface between Ca2+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca2+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca2+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca2+ signaling. Thus, the model provides a useful framework for future studies of excitation-contraction coupling in human atrial myocytes

    Cardiovascular responses to cognitive stress in patients with migraine and tension-type headache

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to investigate the temporal relationship between autonomic changes and pain activation in migraine and tension-type headache induced by stress in a model relevant for everyday office-work.</p> <p>Methods</p> <p>We measured pain, blood pressure (BP), heart rate (HR) and skin blood flow (BF) during and after controlled low-grade cognitive stress in 22 migraineurs during headache-free periods, 18 patients with tension-type headache (TTH) and 44 healthy controls. The stress lasted for one hour and was followed by 30 minutes of relaxation.</p> <p>Results</p> <p>Cardiovascular responses to cognitive stress in migraine did not differ from those in control subjects. In TTH patients HR was maintained during stress, whereas it decreased for migraineurs and controls. A trend towards a delayed systolic BP response during stress was also observed in TTH. Finger BF recovery was delayed after stress and stress-induced pain was associated with less vasoconstriction in TTH during recovery.</p> <p>Conclusion</p> <p>It is hypothesized that TTH patients have different stress adaptive mechanisms than controls and migraineurs, involving delayed cardiovascular adaptation and reduced pain control system inhibition.</p

    Chondroprotection by urocortin involves blockade of the mechanosensitive ion channel Piezo1

    Get PDF
    Osteoarthritis (OA) is characterised by progressive destruction of articular cartilage and chondrocyte cell death. Here, we show the expression of the endogenous peptide urocortin1 (Ucn1) and two receptor subtypes, CRF-R1 and CRF-R2, in primary human articular chondrocytes (AC) and demonstrate its role as an autocrine/paracrine pro-survival factor. This effect could only be removed using the CRF-R1 selective antagonist CP-154526, suggesting Ucn1 acts through CRF-R1 when promoting chondrocyte survival. This cell death was characterised by an increase in p53 expression, and cleavage of caspase 9 and 3. Antagonism of CRF-R1 with CP-154526 caused an accumulation of intracellular calcium (Ca2+) over time and cell death. These effects could be prevented with the non-selective cation channel blocker Gadolinium (Gd3+). Therefore, opening of a non-selective cation channel causes cell death and Ucn1 maintains this channel in a closed conformation. This channel was identified to be the mechanosensitive channel Piezo1. We go on to determine that this channel inhibition by Ucn1 is mediated initially by an increase in cyclic adenosine monophosphate (cAMP) and a subsequent inactivation of phospholipase A2 (PLA2), whose metabolites are known to modulate ion channels. Knowledge of these novel pathways may present opportunities for interventions that could abrogate the progression of OA

    Atrial contractile performance after cessation of atrial fibrillation

    No full text
    corecore