344 research outputs found
Recommended from our members
Processing and Microstructure of WC-CO Cermets by Laser Engineering Net Shaping
Submicron-sized tungsten carbide-cobalt (WC-Co) powder and nanostructured WC-Co
powder were applied to make thick wall samples by the Laser Engineered Net Shaping (LENS®)
process. It was found that decomposition and decarburization of WC was limited during laser
deposition because of the features of the LENS® process: high cooling rate, short heating time,
and low oxygen concentration. The effects of working distance, as well as laser power, powder
feed rate, and traverse speed on microstructure were studied in this paper. Thermal behavior
leading to the observed microstructures that result from the variations in the processing
parameters was investigated in detailMechanical Engineerin
Nanocrystalline Ti Produced by Cryomilling and Consolidation by Severe Plastic Deformation
We report on a study of the nanocrystalline structure in Ti, which was produced by cryogenic milling followed by subsequent consolidation via severe plastic deformation using high pressure torsion. The mechanisms that are believed to be responsible for the formation of grains smaller than 40 nm are discussed and the influence of structural characteristics, such as nanometric grains and oxide nanoparticles, on Ti hardening is established
Recent progress in the CoCrNi alloy system
The exceptional mechanical properties, particularly at cryogenic temperatures, of the equiatomic CoCrNi alloy are documented in numerous published studies. Similar to the equiatomic CoCrFeMnNi (so called Cantor alloy), from which the ternary alloy was derived, the CoCrNi ternary possesses low stacking fault energy that promotes complex deformation modes, as well as the activation of deformation twinning at ambient temperatures and increased strain. In addition to outstanding deformation mechanisms, chemical short-range order and face-centered cubic (FCC)-hexagonal close packed (HCP) transitions have been verified in this alloy and prove to be key factors contributing to the alloy\u27s notable properties. The relationship between stacking fault energy and FCC→HCP phase transitions has been developed over the years through other low stacking fault materials, but the question that arises is: do well established physical metallurgical mechanisms require modification when applied to systems such as CoCrNi given their compositional complexity? Local chemical order plays an important role in that it brings the deviation from the random solid solution behavior generally expected from complex concentrated alloys. In this review, the fundamental atomistic deformation mechanisms of the CoCrNi alloy will be reviewed with a focus on deformation substructures and chemical short-range ordering. Recent studies on microstructural engineering through thermo-mechanical processing and efforts to enhance the tensile properties of the CoCrNi derived systems with minor alloying additions are discussed. Finally, future directions of research, which involve applying current understanding of the underlying mechanisms towards alloy design strategies, are discussed
Low-Cycle Fatigue of Ultra-Fine-Grained Cryomilled 5083 Aluminum Alloy
The cyclic deformation behavior of cryomilled (CM) AA5083 alloys was compared to that of conventional AA5083-H131. The materials studied were a 100 pct CM alloy with a Gaussian grain size average of 315 nm and an alloy created by mixing 85 pct CM powder with 15 pct unmilled powder before consolidation to fabricate a plate with a bimodal grain size distribution with peak averages at 240 nm and 1.8 lm. Although the ultra-fine-grain (UFG) alloys exhibited considerably higher tensile strengths than those of the conventional material, the results from plastic-strain-controlled low-cycle fatigue tests demonstrate that all three materials exhibit identical fatigue lives across a range of plastic strain amplitudes. The CM materials exhibited softening during the first cycle, similar to other alloys produced by conventional powder metallurgy, followed by continual hardening to saturation before failure. The results reported in this study show that fatigue deformation in the CM material is accompanied by slight grain growth, pinning of dislocations at the grain boundaries, and grain rotation to produce macroscopic slip bands that localize strain, creating a single dominant fatigue crack. In contrast, the conventional alloy exhibits a cell structure and more diffuse fatigue damage accumulation
Recommended from our members
Influence of Cooling Rate on Phase Formationin Spray-Formed H13 Tool Steel
Spray forming is an effective way to process many tool steels into near-net-shape molds, dies and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern’s features. The pattern is removed and the die is fitted into a standard holding fixture. This approach results in significant cost and lead-time savings compared to conventional machining, Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life over conventional dies. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die’s properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate and other processing parameters during spray processing and heat treatment of H13 tool steel influence phase formation. Results of case studies on spray-formed die performance in forging, extrusion and die casting, conducted by industry during production runs, will be described
Recommended from our members
Numerical Simulation and Experimental Characterization of a Binary Aluminum Alloy Spray - Application to the Spray Rolling Process
A stochastic, droplet-resolved model has been developed to describe the behavior of a binary aluminum alloy spray during the spray-rolling process. In this process, a molten aluminum alloy is atomized and the resulting spray is depostied on the rolls of a twin-roll caster to produce aluminum strip. The one-way coupled spray model allows the prediction of spray characteristics such as enthalph and solid fraction, and their distribution between the nozzle and the depostion surface. This paper outlines the model development and compares the predicted spray dynamics to PDI measurements performed in a controlled configuration. Predicted and measured droplet velocity and size distributions are presented for two points along the spray centerline along with predicted spray averaged specific enthalph and solid fraction curves
Recommended from our members
Spray Rolling Aluminum Strip for Transportation Applications
Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed materia
Taguchi Loss Function for Varus/Valgus Alignment in Total Knee Arthroplasty
Methods of designing equipment to improve quality have been developed by Taguchi. A key feature of these methods is the development of loss function, which quantifies the financial cost (loss) resulting from deviations from target dimensions. Total knee arthroplasties can fail due to prosthetic component malalignment. A Taguchi loss function for varus/valgus alignment of the prosthesis and revision rates was developed. Six studies were identified from a comprehensive literature search. Varus and extreme valgus alignments correlated with an increased percentage of prosthetic failure. A loss function of L( y) = 326.80yÂŻ2+s2 , where yÂŻ was the mean deviance from the ideal varus/valgus angle and s2 was the variance in varus/valgus angle. This loss function was used to estimate the cost savings of using computer-assisted surgical navigation in total knee arthroplasty (TKA). The average savings of a navigated TKA versus a conventional TKA, based on the expected loss equation derived from the Taguchi loss function, was $2,304 per knee. The expected loss function derived here can serve as a tool for biomedical engineers seeking to use Taguchi quality engineering methods in designing orthopaedic devices
Low-Cycle Fatigue of Ultra-Fine-Grained Cryomilled 5083 Aluminum Alloy
The cyclic deformation behavior of cryomilled (CM) AA5083 alloys was compared to that of conventional AA5083-H131. The materials studied were a 100Â pct CM alloy with a Gaussian grain size average of 315Â nm and an alloy created by mixing 85Â pct CM powder with 15Â pct unmilled powder before consolidation to fabricate a plate with a bimodal grain size distribution with peak averages at 240Â nm and 1.8Â ÎĽm. Although the ultra-fine-grain (UFG) alloys exhibited considerably higher tensile strengths than those of the conventional material, the results from plastic-strain-controlled low-cycle fatigue tests demonstrate that all three materials exhibit identical fatigue lives across a range of plastic strain amplitudes. The CM materials exhibited softening during the first cycle, similar to other alloys produced by conventional powder metallurgy, followed by continual hardening to saturation before failure. The results reported in this study show that fatigue deformation in the CM material is accompanied by slight grain growth, pinning of dislocations at the grain boundaries, and grain rotation to produce macroscopic slip bands that localize strain, creating a single dominant fatigue crack. In contrast, the conventional alloy exhibits a cell structure and more diffuse fatigue damage accumulation
Can racial disparities in optimal gout treatment be reduced? evidence from a randomized trial
There is a disproportionate burden of gout in African-Americans in the U.S. due to a higher disease prevalence and lower likelihood of receiving urate-lowering therapy (ULT), compared to Caucasians. There is an absence of strong data as to whether the response to ULT differs by race/ethnicity. BMC Musculoskeletal Disorders recently published a secondary analyses of the CONFIRMS trial, a large randomized controlled, double-blind trial of 2,269 gout patients. The authors reported that the likelihood of achieving the primary study efficacy end-point of achieving serum urate < 6 mg/dl was similar between African-Americans and Caucasians, for all three treatment arms (Febuxostat 40 mg and 80 mg and allopurinol 300/200 mg). More importantly, rates were similar in subgroups of patients with mild or moderate renal insufficiency. Adverse event rates were similar, as were the rates of gout flares. These findings constitute a convincing evidence to pursue aggressive ULT in gout patients, regardless of race/ethnicity. This approach will likely help to narrow the documented racial disparities in gout care
- …