33 research outputs found

    EEG Biofeedback as a Treatment for Substance Use Disorders: Review, Rating of Efficacy, and Recommendations for Further Research

    Get PDF
    Electroencephalographic (EEG) biofeedback has been employed in substance use disorder (SUD) over the last three decades. The SUD is a complex series of disorders with frequent comorbidities and EEG abnormalities of several types. EEG biofeedback has been employed in conjunction with other therapies and may be useful in enhancing certain outcomes of therapy. Based on published clinical studies and employing efficacy criteria adapted by the Association for Applied Psychophysiology and Biofeedback and the International Society for Neurofeedback and Research, alpha theta training—either alone for alcoholism or in combination with beta training for stimulant and mixed substance abuse and combined with residential treatment programs, is probably efficacious. Considerations of further research design taking these factors into account are discussed and descriptions of contemporary research are given

    An international collaborative evaluation of central serous chorioretinopathy: different therapeutic approaches and review of literature. The European Vitreoretinal Society central serous chorioretinopathy study

    Get PDF
    Purpose: To study and compare the efficacy of different therapeutic options for the treatment of central serous chorioretinopathy (CSCR). Methods: This is a nonrandomized, international multicentre study on 1719 patients (1861 eyes) diagnosed with CSCR, from 63 centres (24 countries). Reported data included different methods of treatment and both results of diagnostic examinations [fluorescein angiography and/or optical coherent tomography (OCT)] and best-corrected visual acuity (BCVA) before and after therapy. The duration of observation had a mean of 11 months but was extended in a minority of cases up to 7 years. The aim of this study is to evaluate the efficacy of the different therapeutic options of CSCR in terms of both visual (BCVA) and anatomic (OCT) improvement. Results: One thousand seven hundred nineteen patients (1861 eyes) diagnosed with CSCR were included. Treatments performed were nonsteroidal anti-inflammatory eye drops, laser photocoagulation, micropulse diode laser photocoagulation, photodynamic therapy (PDT; Standard PDT, Reduced-dose PDT, Reduced-fluence PDT), intravitreal (IVT) antivascular endothelial growth factor injection (VEGF), observation and other treatments. The list of the OTHERS included both combinations of the main proposed treatments or a variety of other treatments such as eplerenone, spironolactone, acetazolamide, beta-blockers, anti-anxiety drugs, aspirin, folic acid, methotrexate, statins, vitis vinifera extract medication and pars plana vitrectomy. The majority of the patients were men with a prevalence of 77%. The odds ratio (OR) showed a partial or complete resolution of fluid on OCT with any treatment as compared with observation. In univariate analysis, the anatomical result (improvement in subretinal fluid using OCT at 1 month) was favoured by age <60 years (p < 0.005), no previous observation (p < 0.0002), duration less than 3 months (p < 0.0001), absence of CSCR in the fellow eye (p = 0.04), leakage outside of the arcade (p = 0.05) and fluid height >500 \u3bcm (p = 0.03). The OR for obtaining partial or complete resolution showed that anti-VEGF and eyedrops were not statistically significant; whereas PDT (8.5), thermal laser (11.3) and micropulse laser (8.9) lead to better anatomical results with less variability. In univariate analysis, the functional result at 1 month was favoured by first episode (p = 0.04), height of subretinal fluid >500 \u3bcm (p < 0.0001) and short duration of observation (p = 0.02). Finally, there was no statistically significant difference among the treatments at 12 months. Conclusion: Spontaneous resolution has been described in a high percentage of patients. Laser (micropulse and thermal) and PDT seem to lead to significant early anatomical improvement; however, there is little change beyond the first month of treatment. The real visual benefit needs further clarification

    Steroidogenic acute regulatory protein in the brain

    No full text
    The nervous system synthesizes steroids that regulate the development and function of neurons and glia, and have neuroprotective properties. The first step in steroidogenesis involves the delivery of free cholesterol to the inner mitochondrial membrane where it can be converted into pregnenolone by the enzyme cytochrome P450side chain cleavage. The peripheral-type benzodiazepine receptor and the steroidogenic acute regulatory protein are involved in this process and appear to function in a coordinated manner. Steroidogenic acute regulatory protein mRNA and protein are widely expressed throughout the adult brain. Steroidogenic acute regulatory protein expression has been detected in many neuronal populations, in ependymocytes, in some astroglial cells, in Schwann cells from peripheral nerves and in proliferating cells of the developing and adult brain. Steroidogenic acute regulatory protein is colocalized in the same neural cells with P450side chain cleavage and with other steroidogenic enzymes. Steroidogenic acute regulatory protein expression in the brain shows marked changes with development, aging and injury. The steroidogenic acute regulatory protein gene may be under the control of diverse mechanisms in different neural cell types, since its expression is upregulated by cyclic AMP (cAMP) in gliomas and astrocytes in culture and downregulated by cyclic AMP (cAMP) in Schwann cells. In addition, activation of N-methyl-d-aspartate receptors, and the consequent rise in intracellular calcium levels, activates steroidogenic acute regulatory protein and steroidogenesis in hippocampal neurons. In conclusion, steroidogenic acute regulatory protein is regulated in the nervous system by different physiological and pathological conditions and may play an important role during brain development, aging and after injury. © 2005 Published by Elsevier Ltd on behalf of IBRO.Peer Reviewe

    Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, cytochrome P450scc, and aromatase in the olivocerebellar system

    No full text
    Compelling evidence has now demonstrated direct biological actions of sex steroids at the cerebellum. Likewise, the expression of key steroidogenic factors, such as the steroidogenic acute regulatory protein (StAR), cytochrome P450 side chain cleavage (P450scc), and aromatase, at this neural site has been reported. Little is known, however, about the regulation of their genes in the cerebellum. Assessment of StAR, P450scc, and aromatase mRNAs in the cerebellum of male and female rats revealed that the expression of these genes is developmentally regulated, with the highest levels at early postnatal ages in both sexes and with significantly higher mRNA levels in postnatal males. Expression of these genes in the female remained unaltered after perinatal androgenization and along the estrous cycle. In contrast, damage of cerebellar afferent neurons of the inferior olivary nucleus evoked a significant increase in StAR, P450scc, and aromatase mRNA levels at this site, as well as a transient elevation in StAR mRNA at the cerebellum. Finally, enhancement of cAMP levels in cultured cerebellar neurons induced a significant increase in StAR and aromatase mRNA levels. In summary, we present herein novel evidence for the developmentally regulated and partially sexually dimorphic pattern of expression of StAR, P450scc, and aromatase genes in the rat cerebellum. These observations, together with the finding that the mRNA levels of these steroidogenic molecules are sensitive to injury and are regulated by intracellular cAMP, strongly suggest that local steroidogenesis is likely to play an important role during development and adaptation to neurodegenerative processes in the olivocerebellar system. © 2005 Wiley Periodicals, Inc.Peer Reviewe

    Aromatase, the enzyme responsible for estrogen biosynthesis, is expressed by human and rat glioblastomas

    No full text
    The biosynthesis of estradiol and related estrogens is catalyzed by the enzyme aromatase. Among other tissues, aromatase is expressed in the brain, where it is involved in the regulation of neuroendocrine events and reproduction. Under physiological conditions, the expression of aromatase in the mammalian brain is restricted to neurons. However, recent studies have shown that reactive astrocytes express aromatase after brain injury. This opens the possibility for the expression of the enzyme in other altered forms of glial cell, such as gliomas. In the present study, the expression of aromatase has been assessed, by RT-PCR and immunocytochemistry, in the rat glioblastoma C6 and in two human glioblastoma cell lines T98G and U373MG. The three cell lines expressed aromatase mRNA and showed a cytoplasmic pattern of aromatase immunoreactivity. In addition, the three cell lines express estrogen receptor α, suggesting that estradiol formed by aromatase may act as an autocrine or paracrine factor for glioblastoma cells. By analogy to the implication of aromatase into the growth of other forms of estrogen-sensitive tumors, such as some breast cancers, it is conceivable that the expression of aromatase may play a role in the growth of glioblastomas. © 2004 Elsevier Ireland Ltd. All rights reserved.Peer Reviewe
    corecore