314 research outputs found

    Functional methods in the theory of magnetoimpurity states of electrons in quantum wires

    Full text link
    Functional methods are used to study magnetoimpurity states of electrons in nanostructures. The Keldysh formalism is applied to these states. The theory is illustrated using a quantum wire sample with impurity atoms capable of localizing electrons in a magnetic field. The characteristics of magnetoimpurity states of electrons in the wire are calculated using the model of a Gaussian separable potential.Comment: 15 pages, 1 figur

    Coupling to haloform molecules in intercalated C60?

    Full text link
    For field-effect-doped fullerenes it was reported that the superconducting transition temperature Tc is markedly larger for C60.2CHX_3 (X=Cl, Br) crystals, than for pure C60. Initially this was explained by the expansion of the volume per C60-molecule and the corresponding increase in the density of states at the Fermi level in the intercalated crystals. On closer examination it has, however, turned out to be unlikely that this is the mechanism behind the increase in Tc. An alternative explanation of the enhanced transition temperatures assumes that the conduction electrons not only couple to the vibrational modes of the C60-molecule, but also to the modes of the intercalated molecules. We investigate the possibility of such a coupling. We find that, assuming the ideal bulk structure of the intercalated crystal, both a coupling due to hybridization of the molecular levels, and a coupling via dipole moments should be very small. This suggests that the presence of the gate-oxide in the field-effect-devices strongly affects the structure of the fullerene crystal at the interface.Comment: 4 pages, 1 figure, to be published in PRB (rapid communication

    SARS-CoV2 (COVID-19) infection: is fetal surgery in times of national disasters reasonable?

    Get PDF
    Even though the global COVID‐19 pandemic may affect how medical care is delivered in general, most countries try to maintain steady access for women to routine pregnancy care, including fetal anomaly screening. This means that, also during this pandemic, fetal anomalies will be detected, and that discussions regarding invasive genetic testing and possibly fetal therapy will need to take place. For patients, concerns about Severe Acute Respiratory Syndrome‐Corona Virus 2 will add to the anxiety caused by the diagnosis of a serious fetal anomaly. Yet, also for fetal medicine teams the situation gets more complex as they must weigh up the risks and benefits to the fetus as well as the mother, while managing a changing evidence base and logistic challenges in their healthcare system

    A look into the future of in-building networks: roadmapping the fiber invasion

    Get PDF
    Optical fiber-based in-building network solutions can outperform in the near future copper- and radiobased solutions both regarding performance and costs. POF solutions are maturing, and can already today be cheaper than Cat-5e solutions when ducts are shared with electricity cabling. Advanced signal modulation techniques allow high-capacity services over POF. With their extra features of multi-wavelength transport and routing, fiber solutions offer a higher network throughput and flexibility, and improved sustainability

    Reversal of the Charge Transfer between Host and Dopant Atoms in Semiconductor Nanocrystals

    Full text link
    We present ab initio density functional calculations that show P (Al) dopant atoms in small hydrogen-terminated Si crystals to be negatively (positively) charged. These signs of the dopant charges are reversed relative to the same dopants in bulk Si. We predict this novel reversal of the dopant charge (and electronic character of the doping) to occur at crystal sizes of order 100 Si atoms. We explain it as a result of competition between fundamental principles governing charge transfer in bulk semiconductors and molecules and predict it to occur in nanocrystals of most semiconductors.Comment: 4 pages, 4 figures (3 in color), 2 table

    Energy aware software evolution for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) are subject to high levels of dynamism arising from changing environmental conditions and application requirements. Reconfiguration allows software functionality to be optimized for current environmental conditions and supports software evolution to meet variable application requirements. Contemporary software modularization approaches for WSNs allow for software evolution at various granularities; from monolithic re-flashing of OS and application functionality, through replacement of complete applications, to the reconfiguration of individual software components. As the nodes that compose a WSN must typically operate for long periods on a single battery charge, estimating the energy cost of software evolution is critical. This paper contributes a generic model for calculating the energy cost of the reconfiguration in WSN. We have embedded this model in the LooCI middleware, resulting in the first energy aware reconfigurable component model for sensor networks. We evaluate our approach using two real-world WSN applications and find that (i.) our model accurately predicts the energy cost of reconfiguration and (ii.) component-based reconfiguration has a high initial cost, but provides energy savings during software evolution

    Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancy–carbon antisite pair

    Get PDF
    We investigated radiation-induced defects in neutron-irradiated and subsequently annealed 6H-silicon carbide (SiC) with electron paramagnetic resonance (EPR), the magnetic circular dichroism of the absorption (MCDA), and MCDA-detected EPR (MCDA-EPR). In samples annealed beyond the annealing temperature of the isolated silicon vacancy we observed photoinduced EPR spectra of spin S=1 centers that occur in orientations expected for nearest neighbor pair defects. EPR spectra of the defect on the three inequivalent lattice sites were resolved and attributed to optical transitions between photon energies of 999 and 1075 meV by MCDA-EPR. The resolved hyperfine structure indicates the presence of one single carbon nucleus and several silicon ligand nuclei. These experimental findings are interpreted with help of total energy and spin density data obtained from the standard local-spin density approximation of the density-functional theory, using relaxed defect geometries obtained from the self-consistent charge density-functional theory based tight binding scheme. We have checked several defect models of which only the photoexcited spin triplet state of the carbon antisite–carbon vacancy pair (CSi-VC) in the doubly positive charge state can explain all experimental findings. We propose that the (CSi-VC) defect is formed from the isolated silicon vacancy as an annealing product by the movement of a carbon neighbor into the vacancy

    Magic Numbers of Silicon Clusters

    Full text link
    A structural model for intermediate sized silicon clusters is proposed that is able to generate unique structures without any dangling bonds. This structural model consists of bulk-like core of five atoms surrounded by fullerene-like surface. Reconstruction of the ideal fullerene geometry results in the formation of crown atoms surrounded by π\pi-bonded dimer pairs. This model yields unique structures for \Si{33}, \Si{39}, and \Si{45} clusters without any dangling bonds and hence explains why these clusters are least reactive towards chemisorption of ammonia, methanol, ethylene, and water. This model is also consistent with the experimental finding that silicon clusters undergo a transition from prolate to spherical shapes at \Si{27}. Finally, reagent specific chemisorption reactivities observed experimentally is explained based on the electronic structures of the reagents.Comment: 4 pages + 3 figures (postscript files after \end{document}
    corecore