5 research outputs found

    Formulation design and evaluation of Cefuroxime axetil 125 mg immediate release tablets using different concentration of sodium lauryl sulphate as solubility enhancer

    Get PDF
    Cefuroxime axetil immediate release tablets were formulated by direct compression method with different percentages of sodium lauryl sulphate (SLS) such as 0.5, 1.0, 1.5 and also without SLS. Resulting batches of tablets were evaluated by both pharmacopeial and non-pharmacopeial methods to ascertain the physico-mechanical properties. Dissolution test were carried out in different medium like 0.07 M HCl, distilled water, 0.1M HCl of pH 1.2 and phosphate buffers at pH 4.5 and 6.8 to observe the drug release against the respective concentration of SLS used. Later, test formulations were compared by f1(dissimilarity) and f2(similarity) factors using a reference brand of cefuroxime axetil. Significant differences (p<0.05) in dissolution rate were recorded with the change in concentration of SLS in different media. Test formulation T3 containing 1% SLS was found to be best optimized formulation based on assay, disintegration, dissolution and similarity and dissimilarity factors

    Mixed solvent system as binder for the production of silicified microcrystalline cellulose-based pellets

    Get PDF
    ABSTRACT: Silicified microcrystalline cellulose pellets with hydroxypropyl methylcellullose (HPMC) as modifier were prepared using a mixed solvent as liquid binder. Pellets were produced using extrusion-spheronization with a mixed solvent consisting of water and isopropanol as liquid binder. The key spheronization aid was Prosolv® SMCC 90. Low viscosity grade HPMC was incorporated aiming to modify release of indometacin. Physical characteristics including breaking load, apparent density and flow properties, particle size distribution and shape were determined. Drug loaded pellets were also tested for dissolution profiles. By adjusting liquid binder property, at isopropanol to water ratio of 3.5 to 6.5, pellets of desirable size and shape with reasonable yields were obtained. Pellets exhibited good flow property and they were mechanically strong. Pellet with higher HPMC content displayed a faster drug dissolution profile. This was because low viscosity grade HPMC was not enough to create strong gel. Instead hydration of HPMC molecules increased matrix’s hydrophilicity and weakened the structure of pellet faster. The release of indometacin was partly based on the erosion of hydrated matrix. The presence of HPMC in the pellets would require a mixed solvent to produce desirable shape. Incorporation of HPMC had modified drug release from the pellets without further coating. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47924
    corecore