25 research outputs found

    Genome Wide Analysis of Acute Myeloid Leukemia Reveal Leukemia Specific Methylome and Subtype Specific Hypomethylation of Repeats

    Get PDF
    Methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq) has the potential to identify changes in DNA methylation important in cancer development. In order to understand the role of epigenetic modulation in the development of acute myeloid leukemia (AML) we have applied MeDIP-seq to the DNA of 12 AML patients and 4 normal bone marrows. This analysis revealed leukemia-associated differentially methylated regions that included gene promoters, gene bodies, CpG islands and CpG island shores. Two genes (SPHKAP and DPP6) with significantly methylated promoters were of interest and further analysis of their expression showed them to be repressed in AML. We also demonstrated considerable cytogenetic subtype specificity in the methylomes affecting different genomic features. Significantly distinct patterns of hypomethylation of certain interspersed repeat elements were associated with cytogenetic subtypes. The methylation patterns of members of the SINE family tightly clustered all leukemic patients with an enrichment of Alu repeats with a high CpG density (P<0.0001). We were able to demonstrate significant inverse correlation between intragenic interspersed repeat sequence methylation and gene expression with SINEs showing the strongest inverse correlation (R2 = 0.7). We conclude that the alterations in DNA methylation that accompany the development of AML affect not only the promoters, but also the non-promoter genomic features, with significant demethylation of certain interspersed repeat DNA elements being associated with AML cytogenetic subtypes. MeDIP-seq data were validated using bisulfite pyrosequencing and the Infinium array

    Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer's disease gene ALG-3.

    No full text

    ISOLATION AND DEDUCED AMINO-ACID-SEQUENCE OF THE GENE ENCODING GP115, A YEAST GLYCOPHOSPHOLIPID-ANCHORED PROTEIN CONTAINING A SERINE-RICH REGION

    No full text
    gp115 is a N- and O-glycosylated protein of Saccharomyces cerevisiae. It is also modified by addition of glycosylphosphatidylinositol, which anchors the protein to the plasma membrane. The gene encoding gp115 (GGP1) has been cloned by a two-step procedure. By an immunoscreening of a yeast genomic DNA library in the expression vector lambda-gt11, a 3'-terminal 0.9-kilobase portion of the gene has been isolated and then used as a molecular probe to screen a yeast genomic DNA library in YEp24. In this way, the whole GGP1 gene has been cloned. Its identity with the gp115 gene has been confirmed by gene disruption, which has also indicated that the function of gp115 is not essential for cell viability. The features of the sequence are also entirely consistent with it corresponding to the gp115 gene. The nucleotide sequence of GGP1 predicts a 60-kDa polypeptide, in agreement with the molecular mass of the gp115 precursor detected in sec53 mutant cells at restrictive temperature. Two hydrophobic sequences, one NH2- and the other COOH-terminal were found. The former has the features of the cleavable signal sequence, which allows the entry of proteins in the secretory pathway. The latter could be the signal sequence that has to be removed during the addition of glycosylphosphatidylinositol. The predicted amino acid sequence of gp115 shows 10 sequons for N-glycosylation and a high proportion of serine-threonine residues (22%) that could provide several sites for O-glycosylation. The unusual concentration of 27 serines in the COOH-terminal portion of the protein shares homology with a similar polyserine repeat of the serine repeat antigen (SERA protein) of Plasmodium falciparum. A two-dimensional analysis of the "in vitro" translational product of the GGP1 mRNA has been carried out, allowing the identification of the "in vivo" gp115 precursor in a two-dimensional gel

    DISSOCIATION OF APOPTOSIS AND ACTIVATION OF IL-1BETA-CONVERTING ENZYME/CED-3 PROTEASES BY ALG-2 AND THE TRUNCATED ALZHEIMER'S GENE ALG-3.

    No full text

    Immunochemical characterization of gp115, a yeast glycoprotein modulated by the cell cycle

    No full text
    A cell cycle-modulated glycoprotein (gp115, 115 kDa, isoelectric point 4.8-5) of Saccharomyces cerevisiae has been purified by Concanavalin A-affinity chromatography, followed by preparative two-dimensional gel electrophoresis, from yeast membrane proteins solubilized in Triton X-100. Antisera have been generated against the electrophoretically purified protein. Their specificity has been established by immunoblot analysis and by comparison of the partial proteolytic map obtained for the immunoprecipitated 35S-labeled 115 kDa polypeptide with that of the in vivo [35S]methionine-labeled gp115 isolated from two-dimensional gels. In tunicamycin-treated cells the immunoblot analysis identifies an unglycosylated precursor (86-88 kDa) and in sec18 mutant cells at the restrictive temperature an intermediary precursor of about 100 kDa. Six to seven carbohydrate chains have been estimated to be present on the gp115 protein, accounting for an electrophoretic shift corresponding to about 27 to 29 kDa of its relative molecular mass. Affinity-purified antibodies against the unglycosylated precursor (86-88 kDa) of gp115 were prepared and used to localize gp115 by indirect immunofluorescence microscopy. The similarity between the pattern of fluorescence obtained with these antibodies and that obtained using anti-plasma membrane H+-ATPase antibodies suggests an association of gp115 with the plasma membrane

    EVOLUTIONARY CONSERVATION OF GENOMIC SEQUENCES RELATED TO THE GGP1 GENE ENCODING A YEAST GPI-ANCHORED GLYCOPROTEIN

    No full text
    The GGP1 gene encodes the only GPI-anchored glycoprotein (gp115) that has been purified to-date in the budding yeast Saccharomyces cerevisiae. It is a single-copy gene whose deduced amino-acid sequence shares no significant homology to any other known protein. In this paper we report a Southern hybridization analysis of genomic DNA from different eukaryotic organisms to identify homologues of the GGP1 gene. We have analyzed DNA prepared from a unicellular green alga (Chlamydomonas eugametos), from two distantly related yeast species (Candida cylindracea and Schizosaccharomyces pombe), and from the common bean Phasoleus vulgaris. The moderate stringency of the experimental conditions and the high specificity of the probes used indicate that a single-copy of GGP1-related sequences exists in all these eukaryotic organisms. The chromosomal localization of the GGP1 gene in S. cerevisiae has also been determined

    CHANGES IN THE PROTEIN-SYNTHESIS PATTERN DURING A NUTRITIONAL SHIFT-DOWN TRANSITION IN SACCHAROMYCES-CEREVISIAE

    No full text
    In Saccharomyces cerevisiae cells (strain A364A) during a shift-down from glucose to raffinose, a rapid reduction in the rate of RNA accumulation was observed whereas the rate of protein accumulation was unaffected for at least 2 h. Following the transition the percentage of unbudded cells slightly increased and the cell volume distribution showed a newly formed subpopulation of smaller cells. To study the effects of the shift-down on the protein synthesis pattern, total [35S]-methionine pulse-labeled extracts were fractionated by high-resolution two-dimensional gel electrophoresis. The synthesis of two classes of proteins (I and II) was modulated during the transitory state of growth: one positively, the other negatively. Two polypeptides of 57 kDa showed the most dramatic increase in synthesis during the shift-down. Also a heat-shock protein (HSP 256) appeared to be positively correlated to the shift-down transition

    THE CELL-CYCLE MODULATED GLYCOPROTEIN GP115 IS ONE OF THE MAJOR YEAST PROTEINS CONTAINING GLYCOSYLPHOSPHATIDYLINOSITOL

    No full text
    The cell cycle modulated protein gp115 (115 kDa, isoelectric point about 4.8-5) of Saccharomyces cerevisiae undergoes various post-translational modifications. It is N-glycosylated during its maturation along the secretory pathway where an intermediary precursor of 100 kDa (p100), dynamically related to the mature gp115 protein, is detected at the level of endoplasmic reticulum. Moreover, we have shown by the use of metabolic labeling with [35S]methionine, [3H]palmitic acid and myo-[3H]inositol combined with high resolution two-dimensional gel electrophoresis and immunoprecipitation with a specific antiserum, that gp115 is one of the major palmitate- and inositol-containing proteins in yeast. These results, and the susceptibility of gp115 to phosphatidylinositol-specific phospholipase C treatment strongly indicate that gp115 contains the glycosylphosphatidylinositol (GPI) structure as membrane anchor domain. The two-dimensional analysis of the palmitate- and inositol-labeled proteins has also allowed the characterization of other polypeptides which possibly contain a GPI structure
    corecore