7,149 research outputs found

    Optical Dipole Trapping beyond Rotating Wave Approximation: The case of Large Detuning

    Full text link
    We show that the inclusion of counter-rotating terms, usually dropped in evaluations of interaction of an electric dipole of a two level atom with the electromagnetic field, leads to significant modifications of trapping potential in the case of large detuning. The results are shown to be in excellent numerical agreement with recent experimental findings, for the case of modes of Laguerre-Gauss spatial profile.Comment: 13 pages, 2 figure

    Design and fabrication of an autonomous rendezvous and docking sensor using off-the-shelf hardware

    Get PDF
    NASA Marshall Space Flight Center (MSFC) has developed and tested an engineering model of an automated rendezvous and docking sensor system composed of a video camera ringed with laser diodes at two wavelengths and a standard remote manipulator system target that has been modified with retro-reflective tape and 830 and 780 mm optical filters. TRW has provided additional engineering analysis, design, and manufacturing support, resulting in a robust, low cost, automated rendezvous and docking sensor design. We have addressed the issue of space qualification using off-the-shelf hardware components. We have also addressed the performance problems of increased signal to noise ratio, increased range, increased frame rate, graceful degradation through component redundancy, and improved range calibration. Next year, we will build a breadboard of this sensor. The phenomenology of the background scene of a target vehicle as viewed against earth and space backgrounds under various lighting conditions will be simulated using the TRW Dynamic Scene Generator Facility (DSGF). Solar illumination angles of the target vehicle and candidate docking target ranging from eclipse to full sun will be explored. The sensor will be transportable for testing at the MSFC Flight Robotics Laboratory (EB24) using the Dynamic Overhead Telerobotic Simulator (DOTS)

    Anharmonicity Induced Resonances for Ultracold Atoms and their Detection

    Full text link
    When two atoms interact in the presence of an anharmonic potential, such as an optical lattice, the center of mass motion cannot be separated from the relative motion. In addition to generating a confinement-induced resonance (or shifting the position of an existing Feshbach resonance), the external potential changes the resonance picture qualitatively by introducing new resonances where molecular excited center of mass states cross the scattering threshold. We demonstrate the existence of these resonances, give their quantitative characterization in an optical superlattice, and propose an experimental scheme to detect them through controlled sweeping of the magnetic field.Comment: 6 pages, 5 figures; expanded presentatio

    Creation of a dipolar superfluid in optical lattices

    Full text link
    We show that by loading a Bose-Einstein condensate (BEC) of two different atomic species into an optical lattice, it is possible to achieve a Mott-insulator phase with exactly one atom of each species per lattice site. A subsequent photo-association leads to the formation of one heteronuclear molecule with a large electric dipole moment, at each lattice site. The melting of such dipolar Mott-insulator creates a dipolar superfluid, and eventually a dipolar molecular BEC.Comment: 4 pages, 2 eps figure

    Adaptive Horizon Model Predictive Control and Al'brekht's Method

    Get PDF
    A standard way of finding a feedback law that stabilizes a control system to an operating point is to recast the problem as an infinite horizon optimal control problem. If the optimal cost and the optmal feedback can be found on a large domain around the operating point then a Lyapunov argument can be used to verify the asymptotic stability of the closed loop dynamics. The problem with this approach is that is usually very difficult to find the optimal cost and the optmal feedback on a large domain for nonlinear problems with or without constraints. Hence the increasing interest in Model Predictive Control (MPC). In standard MPC a finite horizon optimal control problem is solved in real time but just at the current state, the first control action is implimented, the system evolves one time step and the process is repeated. A terminal cost and terminal feedback found by Al'brekht's methoddefined in a neighborhood of the operating point is used to shorten the horizon and thereby make the nonlinear programs easier to solve because they have less decision variables. Adaptive Horizon Model Predictive Control (AHMPC) is a scheme for varying the horizon length of Model Predictive Control (MPC) as needed. Its goal is to achieve stabilization with horizons as small as possible so that MPC methods can be used on faster and/or more complicated dynamic processes.Comment: arXiv admin note: text overlap with arXiv:1602.0861

    Aperiodic Ising Quantum Chains

    Full text link
    Some years ago, Luck proposed a relevance criterion for the effect of aperiodic disorder on the critical behaviour of ferromagnetic Ising systems. In this article, we show how Luck's criterion can be derived within an exact renormalisation scheme for Ising quantum chains with coupling constants modulated according to substitution rules. Luck's conjectures for this case are confirmed and refined. Among other outcomes, we give an exact formula for the correlation length critical exponent for arbitrary two-letter substitution sequences with marginal fluctuations of the coupling constants.Comment: 27 pages, LaTeX, 1 Postscript figure included, using epsf.sty and amssymb.sty (one error corrected, some minor changes

    Surface Properties of Aperiodic Ising Quantum Chains

    Full text link
    We consider Ising quantum chains with quenched aperiodic disorder of the coupling constants given through general substitution rules. The critical scaling behaviour of several bulk and surface quantities is obtained by exact real space renormalization.Comment: 4 pages, RevTex, reference update

    Bichromatic Slowing of Metastable Helium

    Full text link
    We examine two approaches for significantly extending the velocity range of the optical bichromatic force (BCF), to make it useful for laser deceleration of atomic and molecular beams. First, we present experimental results and calculations for BCF deceleration of metastable helium using very large BCF detunings, and discuss the limitations of this approach. We consider in detail the constraints, both inherent and practical, that set the usable upper limit of the BCF. We then show that a more promising approach is to utilize a BCF profile with a relatively small velocity range in conjunction with chirped Doppler shifts, to keep the force resonant with the atoms as they are slowed. In an initial experimental test of this chirped BCF method, helium atoms are slowed by 370\sim 370 m/s using a BCF profile with a velocity width of 125\lesssim 125 m/s. Straightforward scaling of the present results indicates that a decelerator for He* capable of loading a magneto-optical trap (MOT) can yield a brightness comparable to a much larger Zeeman slower.Comment: 11 pages, 9 figures. Published in Phys. Rev.

    Saturation of Cs2 Photoassociation in an Optical Dipole Trap

    Full text link
    We present studies of strong coupling in single-photon photoassociation of cesium dimers using an optical dipole trap. A thermodynamic model of the trap depletion dynamics is employed to extract absolute rate coefficents. From the dependence of the rate coefficient on the photoassociation laser intensity, we observe saturation of the photoassociation scattering probability at the unitarity limit in quantitative agreement with the theoretical model by Bohn and Julienne [Phys. Rev. A, 60, 414 (1999)]. Also the corresponding power broadening of the resonance width is measured. We could not observe an intensity dependent light shift in contrast to findings for lithium and rubidium, which is attributed to the absence of a p or d-wave shape resonance in cesium

    Anomaly Cancelation in Field Theory and F-theory on a Circle

    Full text link
    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.Comment: 48 pages, 2 figures; v2: typos corrected, comments on circle fluxes adde
    corecore