546 research outputs found

    Ultraslow Electron Spin Dynamics in GaAs Quantum Wells Probed by Optically Pumped NMR

    Full text link
    Optically pumped nuclear magnetic resonance (OPNMR) measurements were performed in two different electron-doped multiple quantum well samples near the fractional quantum Hall effect ground state nu=1/3. Below 0.5K, the spectra provide evidence that spin-reversed charged excitations of the nu=1/3 ground state are localized over the NMR time scale of ~40 microseconds. Furthermore, by varying NMR pulse parameters, the electron spin temperature (as measured by the Knight shift) could be driven above the lattice temperature, which shows that the value of the electron spin-lattice relaxation time lies between 100 microseconds and 500 milliseconds at nu=1/3.Comment: 6 pages (REVTEX), 6 eps figures embedded in text; published version; minor changes to match published versio

    Palomar 5 and its Tidal Tails::A Search for New Members in the Tidal Stream

    Get PDF
    In this paper we present the results of a search for members of the globular cluster Palomar 5 and its associated tidal tails. The analysis has been performed using intermediate and low resolution spectroscopy with the AAOmega spectrograph on the Anglo-Australian Telescope. Based on kinematics, line strength and photometric information, we identify 39 new red giant branch stars along ∼\sim20∘^{\circ} of the tails, a larger angular extent than has been previously studied. We also recover eight previously known tidal tail members. Within the cluster, we find seven new red giant and one blue horizontal branch members and confirm a further twelve known red giant members. In total, we provide velocity data for 67 stars in the cluster and the tidal tails. Using a maximum likelihood technique, we derive a radial velocity for Pal 5 of −57.4±0.3-57.4 \pm 0.3 km s−1^{-1} and a velocity dispersion of 1.2±0.31.2\pm0.3 km s−1^{-1}. We confirm and extend the linear velocity gradient along the tails of 1.0±0.11.0 \pm 0.1 km s−1^{-1} deg−1^{-1}, with an associated intrinsic velocity dispersion of 2.1±0.42.1\pm0.4 km s−1^{-1}. Neither the velocity gradient nor the dispersion change in any significant way with angular distance from the cluster, although there is some indication that the gradient may be smaller at greater angular distances in the trailing tail. Our results verify the tails as kinematically cold structures and will allow further constraints to be placed on the orbit of Pal 5, ultimately permitting a greater understanding of the shape and extent of the Galaxy's dark matter halo.Comment: 14 pages, 9 figures, 4 tables; Accepted for publication in MNRA

    Association of Lifestyle and Genetic Risk With Incidence of Dementia

    Get PDF
    This is the final version. Available from the American Medical Association via the DOI in this recordImportance: Genetic factors increase risk of dementia, but the extent to which this can be offset by lifestyle factors is unknown. Objective: To investigate whether a healthy lifestyle is associated with lower risk of dementia regardless of genetic risk. Design, Setting, and Participants: A retrospective cohort study that included adults of European ancestry aged at least 60 years without cognitive impairment or dementia at baseline. Participants joined the UK Biobank study from 2006 to 2010 and were followed up until 2016 or 2017. Exposures: A polygenic risk score for dementia with low (lowest quintile), intermediate (quintiles 2 to 4), and high (highest quintile) risk categories and a weighted healthy lifestyle score, including no current smoking, regular physical activity, healthy diet, and moderate alcohol consumption, categorized into favorable, intermediate, and unfavorable lifestyles. Main Outcomes and Measures: Incident all-cause dementia, ascertained through hospital inpatient and death records. Results: A total of 196 383 individuals (mean [SD] age, 64.1 [2.9] years; 52.7% were women) were followed up for 1 545 433 person-years (median [interquartile range] follow-up, 8.0 [7.4-8.6] years). Overall, 68.1% of participants followed a favorable lifestyle, 23.6% followed an intermediate lifestyle, and 8.2% followed an unfavorable lifestyle. Twenty percent had high polygenic risk scores, 60% had intermediate risk scores, and 20% had low risk scores. Of the participants with high genetic risk, 1.23% (95% CI, 1.13%-1.35%) developed dementia compared with 0.63% (95% CI, 0.56%-0.71%) of the participants with low genetic risk (adjusted hazard ratio, 1.91 [95% CI, 1.64-2.23]). Of the participants with a high genetic risk and unfavorable lifestyle, 1.78% (95% CI, 1.38%-2.28%) developed dementia compared with 0.56% (95% CI, 0.48%-0.66%) of participants with low genetic risk and favorable lifestyle (hazard ratio, 2.83 [95% CI, 2.09-3.83]). There was no significant interaction between genetic risk and lifestyle factors (P = .99). Among participants with high genetic risk, 1.13% (95% CI, 1.01%-1.26%) of those with a favorable lifestyle developed dementia compared with 1.78% (95% CI, 1.38%-2.28%) with an unfavorable lifestyle (hazard ratio, 0.68 [95% CI, 0.51-0.90]). Conclusions and Relevance: Among older adults without cognitive impairment or dementia, both an unfavorable lifestyle and high genetic risk were significantly associated with higher dementia risk. A favorable lifestyle was associated with a lower dementia risk among participants with high genetic risk.James Tudor FoundationMary Kinross Charitable TrustHalpin TrustNational Institute for Health Research (NIHR)National Health and Medical Research Council, AustraliaNational Institute on Aging/National Institutes of HealthEngineering and Physical Sciences Research Council (EPSRC

    Substructures and tidal distortions in the Magellanic stellar periphery

    Get PDF
    We use a new panoramic imaging survey, conducted with the Dark Energy Camera, to map the stellar fringes of the Large and Small Magellanic Clouds to extremely low surface brightness V ≳\gtrsim 32 mag arcsec−2^{-2}. Our results starkly illustrate the closely interacting nature of the LMC-SMC pair. We show that the outer LMC disk is strongly distorted, exhibiting an irregular shape, evidence for warping, and significant truncation on the side facing the SMC. Large diffuse stellar substructures are present both to the north and south of the LMC, and in the inter-Cloud region. At least one of these features appears co-spatial with the bridge of RR Lyrae stars that connects the Clouds. The SMC is highly disturbed -- we confirm the presence of tidal tails, as well as a large line-of-sight depth on the side closest to the LMC. Young, intermediate-age, and ancient stellar populations in the SMC exhibit strikingly different spatial distributions. In particular, those with ages ∼\sim 1.5-4 Gyr exhibit a spheroidal distribution with a centroid offset from that of the oldest stars by several degrees towards the LMC. We speculate that the gravitational influence of the LMC may already have been perturbing the gaseous component of the SMC several Gyr ago. With careful modeling, the variety of substructures and tidal distortions evident in the Magellanic periphery should tightly constrain the interaction history of the Clouds.Comment: Submitted to ApJL; 5 page

    Spectroscopic Evidence for the Localization of Skyrmions near Nu=1 as T->0

    Full text link
    Optically pumped nuclear magnetic resonance measurements of Ga-71 spectra were carried out in an n-doped GaAs/Al0.1Ga0.9As multiple quantum well sample near the integer quantum Hall ground state Nu=1. As the temperature is lowered (down to T~0.3 K), a ``tilted plateau'' emerges in the Knight shift data, which is a novel experimental signature of quasiparticle localization. The dependence of the spectra on both T and Nu suggests that the localization is a collective process. The frozen limit spectra appear to rule out a 2D lattice of conventional skyrmions.Comment: 4 pages (REVTEX), 5 eps figures embedded in text, published versio

    Nuclear Spin Relaxation for Higher Spin

    Full text link
    We study the relaxation of a spin I that is weakly coupled to a quantum mechanical environment. Starting from the microscopic description, we derive a system of coupled relaxation equations within the adiabatic approximation. These are valid for arbitrary I and also for a general stationary non--equilibrium state of the environment. In the case of equilibrium, the stationary solution of the equations becomes the correct Boltzmannian equilibrium distribution for given spin I. The relaxation towards the stationary solution is characterized by a set of relaxation times, the longest of which can be shorter, by a factor of up to 2I, than the relaxation time in the corresponding Bloch equations calculated in the standard perturbative way.Comment: 4 pages, Latex, 2 figure

    Fast Matrix Multiplication via Compiler-only Layered Data Reorganization and Intrinsic Lowering

    Full text link
    The resurgence of machine learning has increased the demand for high-performance basic linear algebra subroutines (BLAS), which have long depended on libraries to achieve peak performance on commodity hardware. High-performance BLAS implementations rely on a layered approach that consists of tiling and packing layers, for data (re)organization, and micro kernels that perform the actual computations. The creation of high-performance micro kernels requires significant development effort to write tailored assembly code for each architecture. This hand optimization task is complicated by the recent introduction of matrix engines by IBM's POWER10 MMA, Intel AMX, and Arm ME to deliver high-performance matrix operations. This paper presents a compiler-only alternative to the use of high-performance libraries by incorporating, to the best of our knowledge and for the first time, the automatic generation of the layered approach into LLVM, a production compiler. Modular design of the algorithm, such as the use of LLVM's matrix-multiply intrinsic for a clear interface between the tiling and packing layers and the micro kernel, makes it easy to retarget the code generation to multiple accelerators. The use of intrinsics enables a comprehensive performance study. In processors without hardware matrix engines, the tiling and packing delivers performance up to 22x (Intel), for small matrices, and more than 6x (POWER9), for large matrices, faster than PLuTo, a widely used polyhedral optimizer. The performance also approaches high-performance libraries and is only 34% slower than OpenBLAS and on-par with Eigen for large matrices. With MMA in POWER10 this solution is, for large matrices, over 2.6x faster than the vector-extension solution, matches Eigen performance, and achieves up to 96% of BLAS peak performance

    Forward and Back: Kinematics of the Palomar 5 Tidal Tails

    Get PDF
    The tidal tails of Palomar 5 (Pal 5) have been the focus of many spectroscopic studies in an attempt to identify individual stars lying along the stream and characterise their kinematics. The well-studied trailing tail has been explored out to a distance of 15^\text{o} from the cluster centre, while less than four degrees have been examined along the leading tail. In this paper, we present results of a spectroscopic study of two fields along the leading tail that we have observed with the AAOmega spectrograph on the Anglo-Australian telescope. One of these fields lies roughly 7^\text{o} along the leading tail, beyond what has been previously been explored spectroscopically. Combining our measurements of kinematics and line strengths with Pan-STARRS1 photometric data and Gaia EDR3 astrometry, we adopt a probabilistic approach to identify 16 stars with high probability of belonging to the Pal 5 stream. Eight of these stars lie in the outermost field and their sky positions confirm the presence of ``fanning'' in the leading arm. We also revisit previously-published radial velocity studies and incorporate Gaia EDR3 astrometry to remove interloping field stars. With a final sample of 109 {\it bona fide} Pal 5 cluster and tidal stream stars, we characterise the 3D kinematics along the the full extent of the system. We provide this catalogue for future modeling work.Comment: 13 pages, 8 figures, accepted for publication in MNRAS. The extended version of Table 4 is available as an ancillery file, and will be supplementary material in MNRA

    Optically Pumped NMR Measurements of the Electron Spin Polarization in GaAs Quantum Wells near Landau Level Filling Factor nu=1/3

    Full text link
    The Knight shift of Ga-71 nuclei is measured in two different electron-doped multiple quantum well samples using optically pumped NMR. These data are the first direct measurements of the electron spin polarization, P(nu,T)=/max, near nu=1/3. The P(T) data at nu=1/3 probe the neutral spin-flip excitations of a fractional quantum Hall ferromagnet. In addition, the saturated P(nu) drops on either side of nu=1/3, even in a Btot=12 Tesla field. The observed depolarization is quite small, consistent with an average of about 0.1 spin-flips per quasihole (or quasiparticle), a value which does not appear to be explicable by the current theoretical understanding of the FQHE near nu=1/3.Comment: 4 pages (REVTEX), 5 eps figures embedded in text; minor changes, published versio
    • …
    corecore