552 research outputs found

    Can the nuclear symmetry potential at supra-saturation densities be negative?

    Full text link
    In the framework of an Isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, for the central 197^{197}Au+197^{197}Au reaction at an incident beam energy of 400 MeV/nucleon, effect of nuclear symmetry potential at supra-saturation densities on the pre-equilibrium clusters emission is studied. It is found that for the positive symmetry potential at supra-saturation densities the neutron to proton ratio of lighter clusters with mass number A≤3A\leq3 ((n/p)A≤3(n/p)_{A\leq3}) is larger than that of the weighter clusters with mass number A>3A>3 ((n/p)A>3(n/p)_{A>3}), whereas for the negative symmetry potential at supra-saturation densities the (n/p)A≤3(n/p)_{A\leq3} is \emph{smaller} than that of the (n/p)A>3(n/p)_{A>3}. This may be considered as a probe of the negative symmetry potential at supra-saturation densities.Comment: 5 pages, 3 figures, 1 table, to be publishe

    Google Books: Page by Page, Click by Click, Users Are Reading Away Privacy Rights

    Get PDF
    Google Books will likely become the world\u27s most extensive book and magazine search and browsing resource, library, and bookstore--combined. However, as users necessarily reveal personal identifying information through their book searches and reading habits, this service poses a significant threat to personal privacy. Because the Google Books Amended Settlement Agreement neglects to meaningfully address user privacy, the only available privacy protections are the limited rights bestowed by the Google Books Privacy Policy and the Google Privacy Policy. Unfortunately, these Privacy Policies protect the interests of Google at the expense of users. The enactment of federal privacy statutes, which include provisions for electronic privacy, underscores the importance of protecting certain types of personal information. Moreover, just as the Constitution has historically protected reading habits and freedom of thought from governmental intrusion, Congress should extend privacy protections for such innately personal data to corporations as well. Additionally, safeguards long-recognized by traditional libraries should be maintained by Internet content providers like Google Books as they provide a functionally similar service. This Note proposes a solution to the privacy concerns raised by services like Google Books: the enactment of a comprehensive federal statute that protects the privacy of personal electronic information. Specifically, such a statute would require: (1) transparency to make consumers aware of what data companies collect and store and what consumers implicitly authorize those companies to do with that data merely by using online products; (2) boundaries on what user information can be tracked and limits on the time frame in which it can be retained; (3) user access to personal information; and (4) protection against release of acquired information to other parties

    Momentum, Density, and Isospin dependence of the Symmetric and Asymmetric Nuclear Matter Properties

    Full text link
    Properties of symmetric and asymmetric nuclear matter have been investigated in the relativistic Dirac-Brueckner-Hartree-Fock approach based on projection techniques using the Bonn A potential. The momentum, density, and isospin dependence of the optical potentials and nucleon effective masses are studied. It turns out that the isovector optical potential depends sensitively on density and momentum, but is almost insensitive to the isospin asymmetry. Furthermore, the Dirac mass mD∗m^*_D and the nonrelativistic mass mNR∗m^*_{NR} which parametrizes the energy dependence of the single particle spectrum, are both determined from relativistic Dirac-Brueckner-Hartree-Fock calculations. The nonrelativistic mass shows a characteristic peak structure at momenta slightly above the Fermi momentum \kf. The relativistic Dirac mass shows a proton-neutron mass splitting of mD,n∗<mD,p∗m^*_{D,n} <m^*_{D,p} in isospin asymmetric nuclear matter. However, the nonrelativistic mass has a reversed mass splitting mNR,n∗>mNR,p∗m^*_{NR,n} >m^*_{NR,p} which is in agreement with the results from nonrelativistic calculations.Comment: 25 pages, 12 figures, to appear in Physical Review

    Electromagnetic form factors of the baryon octet in the perturbative chiral quark model

    Full text link
    We apply the perturbative chiral quark model at one loop to analyze the electromagnetic form factors of the baryon octet. The analytic expressions for baryon form factors, which are given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, axial nucleon coupling, strong pion-nucleon form factor), and the numerical results for baryon magnetic moments, charge and magnetic radii are presented. Our results are in good agreement with experimental data.Comment: 15 pages, 6 figures, to be published in Eur. Phys. J.

    MesonNet Workshop on Meson Transition Form Factors

    Full text link
    The mini-proceedings of the Workshop on Meson Transition Form Factors held in Cracow from May 29th to 30th, 2012 introduce the meson transition form factor project with special emphasis on the interrelations between the various form factors (on-shell, single off-shell, double off-shell). Short summaries of the talks presented at the workshop follow.Comment: 69 pages, 14 figures; all talks can be found at https://sites.google.com/site/mesonnetwork/home/activities/form-factor-workshop-2012; v2: workshop link updated (as the page had to be moved to a commercial server), table 6 correcte

    Reconciling threshold and subthreshold expansions for pion-nucleon scattering

    Get PDF
    Heavy-baryon chiral perturbation theory (ChPT) at one loop fails in relating the pion-nucleon amplitude in the physical region and for subthreshold kinematics due to loop effects enhanced by large low-energy constants. Studying the chiral convergence of threshold and subthreshold parameters up to fourth order in the small-scale expansion, we address the question to what extent this tension can be mitigated by including the Δ(1232)\Delta(1232) as an explicit degree of freedom and/or using a covariant formulation of baryon ChPT. We find that the inclusion of the Δ\Delta indeed reduces the low-energy constants to more natural values and thereby improves consistency between threshold and subthreshold kinematics. In addition, even in the Δ\Delta-less theory the resummation of 1/mN1/m_N corrections in the covariant scheme improves the results markedly over the heavy-baryon formulation, in line with previous observations in the single-baryon sector of ChPT that so far have evaded a profound theoretical explanation.Comment: 10 pages, 4 tables, Mathematica notebook with the analytic expressions for threshold and subthreshold parameters included as supplementary material; journal versio

    Isospin mixing in the nucleon and 4He and the nucleon strange electric form factor

    Get PDF
    In order to isolate the contribution of the nucleon strange electric form factor to the parity-violating asymmetry measured in 4He(\vec e,e')4He experiments, it is crucial to have a reliable estimate of the magnitude of isospin-symmetry-breaking (ISB) corrections in both the nucleon and 4He. We examine this issue in the present letter. Isospin admixtures in the nucleon are determined in chiral perturbation theory, while those in 4He are derived from nuclear interactions, including explicit ISB terms. A careful analysis of the model dependence in the resulting predictions for the nucleon and nuclear ISB contributions to the asymmetry is carried out. We conclude that, at the low momentum transfers of interest in recent measurements reported by the HAPPEX collaboration at Jefferson Lab, these contributions are of comparable magnitude to those associated with strangeness components in the nucleon electric form factor.Comment: 4 pages, 2 figures, revtex

    Investigation of a0-f0 mixing

    Get PDF
    We investigate the isospin-violating mixing of the light scalar mesons a0(980) and f0(980) within the unitarized chiral approach. Isospin-violating effects are considered to leading order in the quark mass differences and electromagnetism. In this approach both mesons are generated through meson-meson dynamics. Our results provide a description of the mixing phenomenon within a framework consistent with chiral symmetry and unitarity, where these resonances are not predominantly q q-bar states. Amongst the possible experimental signals, we discuss observable consequences for the reaction J/Psi -> phi pi0 eta in detail. In particular we demonstrate that the effect of a0-f0 mixing is by far the most important isospin-breaking effect in the resonance region and can indeed be extracted from experiment.Comment: 15 pages, 9 figures; discussion extended, title changed, version published in Phys. Rev.
    • …
    corecore