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Heavy-baryon chiral perturbation theory (ChPT) at one loop fails in relating the pion–nucleon amplitude 
in the physical region and for subthreshold kinematics due to loop effects enhanced by large low-energy 
constants. Studying the chiral convergence of threshold and subthreshold parameters up to fourth order 
in the small-scale expansion, we address the question to what extent this tension can be mitigated by 
including the �(1232) as an explicit degree of freedom and/or using a covariant formulation of baryon 
ChPT. We find that the inclusion of the � indeed reduces the low-energy constants to more natural values 
and thereby improves consistency between threshold and subthreshold kinematics. In addition, even in 
the �-less theory the resummation of 1/mN corrections in the covariant scheme improves the results 
markedly over the heavy-baryon formulation, in line with previous observations in the single-baryon 
sector of ChPT that so far have evaded a profound theoretical explanation.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The approximate chiral symmetry of QCD imposes strong con-
straints on low-energy hadron dynamics, which can be explored 
systematically in the framework of chiral perturbation theory 
(ChPT) [1–3]. While in the meson sector the expansion proceeds 
directly in terms of momenta and quark masses divided by a 
breakdown scale �b, typically identified with the mass of the 
ρ(770) or the scale of chiral symmetry breaking �χ = 4π Fπ ∼
1.2 GeV, in the baryon sector the nucleon mass mN represents a 
new scale that needs to be taken into account in order not to spoil 
the chiral power counting [4]. Heavy-baryon ChPT (HBChPT) [5,6]
achieves this by systematically expanding the effective Lagrangian 
in 1/mN , identifying �b ∼ mN . In subsequent years, several vari-
ants of covariant baryon ChPT have been developed [7–12], in 
which the power-counting-violating part is subtracted in one way 
or another. While originally motivated by the desire to preserve 
the analytic structure of the amplitude in the vicinity of anomalous 
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thresholds and unitarity cuts, it has also been observed that the re-
summation of 1/mN corrections can improve the phenomenology 
even in kinematic regions where the HB formulation does repro-
duce the analytic structure correctly [13–16].

The efficacy of different formulations of baryon ChPT has im-
plications beyond the single-nucleon sector. In chiral effective field 
theory, the extension of ChPT to multi-nucleon systems [17–21], 
the low-energy constants (LECs) that appear in pion–nucleon (π N) 
scattering determine the long-range part of the nucleon–nucleon 
(N N) potential as well as three-nucleon forces. While the use of 
the HB formulation is common to all implementations to date, 
1/mN corrections are often counted suppressed by one additional 
order compared to the standard single-nucleon HB counting, to ac-
count for the fact that the breakdown scale in the multi-nucleon 
sector tends to be lower than in single-nucleon applications [18,
20] (this counting scheme will be referred to as HB-N N counting 
in the following, in contrast to the standard HB-π N).

Recently, the combination of dispersion theory in the form of 
Roy–Steiner (RS) equations [22–28] with precision measurements 
of the π N scattering lengths in pionic atoms [29–33] resulted 
in a reliable representation of the π N scattering amplitude in 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the whole low-energy region, both in the physical region and for 
subthreshold kinematics. Surprisingly, the matching to HBChPT re-
vealed that, in contrast, the chiral representation is not accurate 
enough to relate these two regions [25]. These findings can be best 
illustrated considering the parameters in the expansion around 
threshold and the subthreshold point: with LECs determined in the 
subthreshold region, where due to the absence of unitarity cuts 
ChPT is expected to converge best [34], the chiral series fails to 
reproduce some of the threshold parameters. The reason for this 
behavior can be traced back to loop diagrams producing terms 
that scale as g2

A(c3 − c4) ∼ −16 GeV−1, an enhancement that is, 
at least partially, generated by saturation of the LECs ci with the 
�(1232) resonance. As argued in [25], this inconsistency between 
subthreshold and threshold kinematics implies that in a HB formu-
lation, LECs determined at the subthreshold point are preferable 
for multi-nucleon applications, given that the kinematics for the 
two-pion exchange in the N N potential are much closer to the 
subthreshold point than to the physical region in π N scattering.

In this paper we address the question to what extent consis-
tency between subthreshold and physical region can be restored 
by introducing the � as an explicit degree of freedom, and/or 
by using a covariant formulation of baryon ChPT. The � is in-
cluded within the small-scale expansion [35], counting the differ-
ence ε = m� − mN in the same way as a momentum scale p. π N
scattering with explicit � degrees of freedom has been consid-
ered before at O(ε3) in HB [36] and covariant [37] formulations, 
as well as within the δ-counting of [38] up to O(p3) in a covari-
ant scheme [15] (see also [39]). Here, we extend the analysis to 
full one-loop order O(ε4) and study the predictions for the lead-
ing eight threshold parameters, with LECs determined from the 
subthreshold parameters predicted by the RS analysis [26]. After 
a brief introduction to the formalism in Sect. 2, we first present 
the results when including the � in HBChPT in Sect. 3, and then 
extend the analysis towards a covariant formulation in Sect. 4. We 
offer our conclusions in Sect. 5. Details on large-Nc constraints and 
correlation coefficients of the extracted LECs are summarized in 
the appendices.

2. Formalism

For the calculation of the threshold and subthreshold parame-
ters, we heavily rely on the full O(ε4) results from [40], where the 
T -matrix for the process π N → π N is calculated in the small-scale 
expansion

ε =
{

p

�b
,

Mπ

�b
,

m� − mN

�b

}
with �b ∈ {�χ,mN}, (1)

in the HB as well as in the covariant approach. The standard on-
mass-shell renormalization scheme is employed for the leading-
order LECs, where pion, nucleon, and � masses are denoted by 
Mπ , mN , and m� , respectively, and the axial couplings of the nu-
cleon and nucleon–� transition by g A and hA (both axial couplings 
are renormalized at the pion vertex instead of the axial current). 
After absorbing redundant contributions proportional to the LECs 
d18 from L(3)

π N ,1 e19,20,21,22,36,37,38 from L(4)
π N , b3,6 from L(2)

π N� , c�
i

from L(2)
π� , hi from L(3)

π N� , and ki from L(4)
π N� , the π N scatter-

ing amplitude at O(ε4) depends on the LECs c1,2,3,4 from L(2)
π N , 

d1+2,3,5,14−15 from L(3)
π N , e14,15,16,17,18 from L(4)

π N , hA from L(1)
π N� , 

g1 from L(1)
π� , and b4,5 from L(2)

π N� . In the HB approach, the LECs 
ci , di , and ei are renormalized to absorb UV divergent and addi-
tional decoupling-breaking pieces. In the covariant approach, the 

1 In all Lagrangians, the upper index denotes the chiral order, the lower the par-
ticle content. For explicit expressions we refer to [40].
same set of LECs is needed to cancel UV divergences as well as 
decoupling- and/or power-counting-breaking pieces [16,40]. In par-
ticular, both chiral amplitudes are renormalized in such a way that 
the explicit difference is of higher order only, O(ε5).

Employing the standard subthreshold and threshold expansion 
of the π N scattering amplitude, we calculate both sets of the 
respective coefficients (explicit expressions are provided as sup-
plementary material in the form of a Mathematica notebook). 
Furthermore, we performed a strict chiral expansion of the co-
variant expressions to check that the HB expressions determined 
from the HB amplitude are reproduced. In contrast to the �-less 
case, where the 13 leading subthreshold parameters depend on 13
ππ N N-LECs, the expressions in the �-ful case depend on 4 addi-
tional LECs from the � sector. Thus, these additional LECs cannot 
be extracted by the subthreshold matching but further constraints 
have to be introduced. In particular, we assume the following con-
servative estimates for those particular LECs

hA = 1.40 ± 0.05, b4 + b5 = (0 ± 5)GeV−1,

g1 = 2.32 ± 0.26, b4 − b5 = (0 ± 5)GeV−1, (2)

motivated by large-Nc considerations and, in the case of hA , sup-
plemented by phenomenology, as explained below, where the in-
put from phenomenology allows us to reduce the uncertainty com-
pared to the large-Nc prediction alone.

Given that the contributions proportional to hA already appear 
at leading order, its error is most important for the final uncer-
tainty, but our assignment in (2) is still reasonably conservative. It 
is consistent with the large-Nc prediction, hA = 1.37 ±0.15 [41,42], 
the value extracted from the covariant � width at full one-loop 
order hA = 1.43 ± 0.02 [43], and the recent extraction from N N
scattering by the Granada group, hA = 1.397 ± 0.009 [44], where 
the error refers to statistics only. The contribution proportional to 
g1 starts at loop level, O(ε3), and its effect on the threshold and 
subthreshold parameters is much less relevant. The estimate in (2)
corresponds to its large-Nc prediction, i.e. g1 = 9/5 g A with an 
O(1/N2

c ) error [41,42]. The values of hA and g1 are also consis-
tent with constraint from the � width recently derived in [45]. 
Finally, the LECs b4 and b5 only contribute at O(ε4), and their im-
pact on our results is almost negligible. The intervals in (2) are 
based on a large-Nc calculation, which sets their difference and 
sum as b4 − b5 = 3/(2

√
2) c4 and b4 + b5 = 2

√
2/3 c�

11, see Ap-
pendix A. The value of c4 in the relation for b4 − b5 refers to 
O(ε2), see Table 1, which corresponds to the consistent order of 
c4 in the large-Nc relation and also avoids possible correlations 
with the redundant �-LECs absorbed into the ci at higher orders, 
leading to an estimate of about 1 GeV−1. In contrast, the unknown 
LEC appearing in the sum, c�

11, proportional to an isotensor contri-
bution, is fixed to zero. Choosing uncertainties generously to cover 
possible deviations in both cases (e.g. values obtained in π N →
ππ N [46]), we simply vary both combinations within ±5 GeV−1. 
We also checked that taking even larger intervals for these two 
parameters does not produce any noticeable effect in our results. 
In addition, we employ the following numerical values for the 
various LECs and masses entering the leading-order effective La-
grangian: Mπ = 139.57 MeV, Fπ = 92.2 MeV, mN = 938.27 MeV, 
m� = 1232 MeV [47], and g A = 1.289. The value for g A includes 
the Goldberger–Treiman discrepancy parameterized by d18, using 
a π N coupling constant g2/(4π) = 13.7 [33]. We do not study the 
effects of the uncertainties of those quantities, which are negligi-
ble in comparison to the other uncertainties encountered in the 
calculation.

In the following, we will proceed in close analogy to [25]. The 
LECs ci , di , and ei are matched order-by-order to the respective 
subthreshold parameters, where we employ the values determined 



D. Siemens et al. / Physics Letters B 770 (2017) 27–34 29
Table 1
LECs extracted from fits at NLO, N2LO, and N3LO in the HB-N N , HB-π N , and covariant scheme with explicit � degrees of freedom (εn) and in the �-less approach (Q n). 
The units of the LECs ci , di , and ei are GeV−1, GeV−2, and GeV−3, respectively.

HB-N N HB-π N Covariant

NLO Q 2 ε2 Q 2 ε2 Q 2 ε2

c1 −0.74(2) −0.74(2) −0.74(2) −0.69(2) −0.74(2) −0.69(3)

c2 1.81(3) −0.49(17) 1.81(3) 0.81(8) 1.81(3) 0.40(10)

c3 −3.61(5) −0.65(22) −3.61(5) −0.44(23) −3.61(5) −0.49(23)

c4 2.44(3) 0.96(11) 2.17(3) 0.64(11) 2.17(3) 0.64(11)

N2LO Q 3 ε3 Q 3 ε3 Q 3 ε3

c1 −1.08(2) −1.25(3) −1.08(2) −1.24(3) −1.00(2) −1.12(3)

c2 3.26(3) 1.37(16) 3.26(3) 0.79(20) 2.55(3) 1.02(12)

c3 −5.39(5) −2.41(23) −5.39(5) −2.49(23) −4.90(5) −2.27(20)

c4 3.62(3) 1.66(14) 3.62(3) 1.67(14) 3.08(3) 1.21(14)

d1+2 1.02(6) 0.11(10) 1.02(6) −0.09(12) 1.78(6) 0.60(10)

d3 −0.46(2) −0.81(3) −0.46(2) −0.45(5) −1.12(2) −1.44(3)

d5 0.15(5) 0.80(7) 0.15(5) 0.47(6) −0.05(5) 0.28(5)

d14−15 −1.85(6) −1.04(12) −1.85(6) −0.67(14) −2.27(6) −0.96(12)

N3LO Q 4 ε4 Q 4 ε4 Q 4 ε4

c1 −1.11(3) −1.11(3) −1.11(3) −1.11(3) −1.12(3) −1.10(3)

c2 3.61(4) 1.52(21) 3.17(3) 1.29(18) 3.35(3) 1.20(17)

c3 −5.60(6) −1.99(30) −5.67(6) −2.15(29) −5.70(6) −2.19(28)

c4 4.26(4) 1.88(19) 4.35(4) 1.94(19) 3.97(3) 1.77(17)

d1+2 6.37(9) 1.75(42) 7.66(9) 2.95(41) 4.70(7) 1.75(22)

d3 −9.18(9) −3.61(48) −10.77(10) −6.02(43) −5.26(5) −3.24(17)

d5 0.87(5) 1.52(7) 0.59(5) 1.02(6) 0.31(5) 0.65(8)

d14−15 −12.56(12) −4.32(79) −13.44(12) −5.24(76) −8.84(10) −3.39(53)

e14 1.16(4) 1.67(6) 0.85(4) 1.17(6) 1.17(4) 1.31(5)

e15 −2.26(6) −4.91(12) −0.83(6) −3.38(13) −2.58(7) −3.07(14)

e16 −0.29(3) 4.16(13) −2.75(3) 2.03(24) −1.77(3) 1.73(16)

e17 −0.17(6) −0.44(6) 0.03(6) −0.37(7) −0.45(6) −0.51(6)

e18 −3.47(5) 1.43(19) −4.48(5) 0.71(23) −1.68(5) 1.33(13)
by the RS analysis [26]. Furthermore, the full covariance matrix 
between the subthreshold parameters as well as the uncertain-
ties of the �-LECs in (2) are propagated by the standard Gaussian 
approach into uncertainties of the extracted LECs. The main dif-
ference to [25] is the explicit treatment of the �(1232) resonance 
in a consistent power counting up to full one-loop order. Hence, 
we repeat the matching in the two HB countings already intro-
duced in Sect. 1, the standard one denoted by HB-π N , and the 
one employed in the few-nucleon sector denoted by HB-N N . In 
addition, we also perform the matching in a manifestly covariant 
framework, both with and without explicit � dynamics. By absorb-
ing the Goldberger–Treiman correction due to d18, the value of g A

is slightly changed compared to [25], but the difference constitutes 
an O(ε5) effect.

3. Results including the �(1232)

The extracted LECs in both HB approaches are given in Table 1, 
comparing the �-ful and �-less approaches. As expected [15,36,
37,39,48–50], one can observe a strong reduction of the size of 
the LECs ci and di when the � is considered explicitly. In con-
trast, the propagated errors turn out to be somewhat larger than 
in the �-less case. Obviously this is due to the errors stemming 
from the additional �-LECs in (2), mainly from the uncertainty in 
hA . In particular, the results at O(ε3) look very convincing with 
all LECs of natural size. At O(ε4), however, the extracted values 
for the LECs d3 and d14−15 still appear unnaturally large, especially 
in the HB-π N counting. This behavior is not unexpected given that 
the critical combination g2

A(c3 − c4) is still large, albeit markedly 
reduced, which reflects the fact that even though in a resonance-
saturation picture the �(1232) indeed contributes strongly to c3
and c4, additional resonances are required for a quantitative un-
derstanding [48,49]. As for the fourth-order LECs, some ei even 
increase in magnitude when the � is included. The correlation co-
efficients at each order are summarized in Appendix B in Table 3.
Our main results, the predictions for the eight leading thresh-
old parameters, are collected in Table 2, once again, comparing 
both HB countings of 1/mN contributions and �-ful and �-less 
approaches. We also show the results from the RS analysis [26]
as a benchmark. As already observed in [25,26], the predictions 
in the �-less case do not reproduce the RS results, a deficiency 
that becomes most notable in the a−

0+ and b−
0+ parameters, since 

these parameters depend most strongly on the critical combination 
of di . In general, the convergence is quite poor, which is reflected 
by strong changes of the predicted threshold parameters between 
chiral orders. Including the � explicitly visibly improves this con-
vergence pattern, as the differences between the chiral orders are 
reduced and the predictions at the highest order considered are in 
the same ballpark as the RS results. We also show the uncertain-
ties propagated from the LECs taken as input in the prediction of 
the threshold parameters, which prove to be of the same size as 
the theoretical error due to the truncation of the chiral series. This 
is clearly not the case in the �-less case, where the statistical error 
is negligibly small compared to the truncation error (and therefore 
not displayed). The results are in reasonable agreement with the 
RS result except for a−

0+ , which is significantly over-predicted in 
the HB-N N counting and strongly under-predicted in the HB-π N
counting, and b−

0+ in the HB-π N case. Finally, just considering the 
predictions for the mean values, one observes that almost all pa-
rameters deviate noticeably from the RS values, so that agreement 
is only found within the relatively conservative error estimates for 
the �-LECs.

4. Results in a covariant formulation

We start off emphasizing that based on the employed power 
counting, there is no a priori argument why a manifestly covari-
ant scheme should give improved results compared to the HB 
approach. However, since there are empirical indications that a 
resummation of 1/mN corrections can lead to phenomenological 
improvements [14–16], we consider here the covariant analog of 
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Table 2
Threshold parameters predicted at next-to-leading (NLO), next-to-next-to-leading (N2LO), and next-to-next-to-next-to-leading (N3LO) order in the HB-N N , HB-π N , and 
covariant scheme with explicit � degrees of freedom and in the �-less approach, in comparison to the values determined by the RS analysis. The orders refer to the 
counting in the small-scale expansion (εn) and the ChPT expansion parameter (Q n), respectively. The quoted errors only cover the uncertainties propagated from the RS 
subthreshold parameters (and the � couplings where applicable), while the systematic uncertainties related to the chiral expansion can be inferred by comparing the 
subsequent chiral orders.

HB-N N HB-π N Covariant RS

NLO Q 2 ε2 Q 2 ε2 Q 2 ε2

a+
0+[M−1

π 10−3] −14.2 15.5(2.6) −24.0 −14.4(8.9) −24.1 −7.8(6.6) −0.9(1.4)

a−
0+[M−1

π 10−3] 79.4 79.4(0) 79.4 79.4(0) 80.1 81.9(1) 85.4(9)

a+
1+[M−3

π 10−3] 97.3 123.5(5.9) 103.9 129.2(6.2) 108.6 130.3(6.2) 131.2(1.7)

a−
1+[M−3

π 10−3] −62.0 −78.6(2.1) −66.5 −81.7(2.1) −67.4 −83.2(2.1) −80.3(1.1)

a+
1−[M−3

π 10−3] −34.6 −48.7(3.9) −47.6 −56.0(4.4) −43.6 −57.3(4.5) −50.9(1.9)

a−
1−[M−3

π 10−3] −7.9 −15.0(1.9) −12.5 −15.9(2.2) −5.7 −14.2(2.5) −9.9(1.2)

b+
0+[M−3

π 10−3] −80.0 −50.3(2.5) −70.2 −42.7(8.6) −53.1 −36.3(5.5) −45.0(1.0)

b−
0+[M−3

π 10−3] 39.7 39.7(0) 20.1 26.7(5) 11.3 21.7(5) 4.9(8)

N2LO Q 3 ε3 Q 3 ε3 Q 3 ε3

a+
0+[M−1

π 10−3] 0.5 −12.9(6.9) 0.5 −3.5(3.6) −14.8 1.2(5.7) −0.9(1.4)

a−
0+[M−1

π 10−3] 92.2 92.7(10) 92.9 90.5(9) 89.9 81.7(1.2) 85.4(9)

a+
1+[M−3

π 10−3] 113.8 124.8(5.4) 121.7 125.4(5.6) 116.4 126.8(5.2) 131.2(1.7)

a−
1+[M−3

π 10−3] −74.8 −77.5(2.1) −75.5 −78.5(2.2) −75.1 −79.5(2.1) −80.3(1.1)

a+
1−[M−3

π 10−3] −54.1 −54.4(4.1) −47.0 −54.2(4.1) −55.5 −54.1(3.8) −50.9(1.9)

a−
1−[M−3

π 10−3] −14.1 −13.0(2.6) −2.5 −7.4(2.8) −10.4 −10.0(3.0) −9.9(1.2)

b+
0+[M−3

π 10−3] −45.7 −41.2(4.5) −22.1 −28.8(1.5) −50.9 −29.1(2.7) −45.0(1.0)

b−
0+[M−3

π 10−3] 35.9 26.4(1.0) 22.6 17.3(8) 21.6 14.3(1.5) 4.9(8)

N3LO Q 4 ε4 Q 4 ε4 Q 4 ε4

a+
0+[M−1

π 10−3] −1.5 −1.5(8.5) −8.0 1.4(7.5) −5.7 −0.7(6.6) −0.9(1.4)

a−
0+[M−1

π 10−3] 68.5 96.3(2.0) 58.6 69.1(1.2) 83.8 83.4(1.0) 85.4(9)

a+
1+[M−3

π 10−3] 134.3 136.2(8.2) 132.1 135.8(7.9) 128.0 132.7(7.6) 131.2(1.7)

a−
1+[M−3

π 10−3] −80.9 −80.0(3.0) −90.1 −86.5(3.1) −78.1 −81.1(2.1) −80.3(1.1)

a+
1−[M−3

π 10−3] −55.7 −47.2(5.0) −73.7 −56.6(4.6) −53.5 −51.4(4.9) −50.9(1.9)

a−
1−[M−3

π 10−3] −10.0 −6.0(2.9) −23.7 −15.2(2.8) −11.8 −10.3(3.9) −9.9(1.2)

b+
0+[M−3

π 10−3] −42.2 −30.8(7.9) −44.5 −30.6(7.3) −54.7 −33.8(6.6) −45.0(1.0)

b−
0+[M−3

π 10−3] −31.6 7.6(2.3) −65.2 −35.0(2.3) 2.3 2.8(2.8) 4.9(8)
the HB approach discussed in the previous section. While both HB 
countings of 1/mN contributions yield a consistent picture, they 
still display visible differences among each other and to the RS re-
sults. A covariant approach, resumming an infinite series of 1/mN

contributions, is not uniquely defined. In our case, we employ a 
covariant resummation as laid out in [40] and sketched in Sect. 2, 
which ensures that the differences to the HB results start at O(ε5), 
so that the LECs in the covariant and HB schemes can be identi-
fied with each other. The numerical evaluation of the scalar loop 
functions was done with the LoopTools package [51].

The results for the extracted LECs from the matching to the 
subthreshold parameters are also given in Table 1, comparing the 
case with and without explicit � degrees of freedom. As can be 
seen, the values of the LECs in the �-less case are quite similar 
to the HB results up to order Q 3. At order Q 4, the ci and ei are 
also consistent with HB, but the di are noticeably smaller in size. 
In particular the previously problematic values of d3 and d14−15
are reduced by roughly 50% in the covariant approach. Including 
the explicit � dynamics even further decreases those LECs. More-
over, in the �-ful case, the differences of the LECs between chiral 
orders are reasonably small and all LECs turn out to be of natural 
size. This is already a good indicator that the convergence in the 
covariant case is improved compared to the HB cases. The correla-
tion matrices in the �-less and �-ful case are given in Appendix B
in Table 4.

The predictions for the threshold parameters in comparison to 
the previous HB results and the RS values are included in Table 2. 
As can be seen, already the covariant �-less results at O(Q 4) are 
in reasonable agreement with the values given by the RS anal-
ysis. Moreover, the changes between the chiral orders are much 
smaller than in both HB countings, even though the dominant er-
ror still originates from the truncation of the chiral series. The 
convergence pattern improves further by including the � explic-
itly, with changes between the chiral orders being small and even 
negligible compared to the propagated errors stemming from the 
uncertainties of the �-LECs. It is the propagation of these uncer-
tainties that explains the increase of the errors at higher orders, 
where variations of the hA and g1 central values become much 
more significant. Moreover, if we just consider the highest-order 
results, at O(ε4), and neglect the statistical error completely, we 
observe that most mean values are perfectly consistent with the 
RS results, only the values of the effective ranges b±

0+ are too small 
in magnitude. In conclusion, it is apparent that the results in the 
covariant framework present a significant improvement over the 
two HB approaches. In fact, the final uncertainties in the threshold 
parameters are dominated by the error estimates for hA and g1. 
Thus, the observed agreement of the central values suggests that 
the errors of the �-LECs might be overestimated, but a more re-
liable determination of those couplings is needed to draw firmer 
conclusions.

Beyond these empirical findings, it would be important to un-
derstand the reason for the improvement in the covariant case. It 
is well-known that a covariant formulation is preferable in a situ-
ation where the HB expansion leads to distortions of the analytic 
structure, e.g. in the case of anomalous thresholds [8,13], but the 
HB formulation reproduces the analytical structure of the π N am-
plitude in the threshold and subthreshold regions correctly, where, 
in addition, 1/mN corrections are expected to be small. Thus, in 
order to further investigate the improved convergence in the co-
variant approach, we have also analyzed the strict chiral expansion 
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of the covariant expressions for the subthreshold parameters. We 
observed a very slow and oscillating convergence, whose origin 
can be traced back to the convergence pattern of nonanalytic func-
tions in M2

π such as arctan(Mπ/mN), which introduce additional 
factors of π , and especially higher-order chiral logarithms such as 
log(M2

π/m2
N) into the chiral expansion. Such chiral logarithms only 

appear at higher chiral order, O(ε5), in the covariant expressions 
and become absorbed into LECs at lower chiral orders (they would 
be completely absorbed into LECs in a strict HB framework). In 
particular, such functions are split into an infrared singular and 
regular part [8,14] according to

log
M2

π

m2
N

=
[

32π2λ̄ + log
M2

π

μ2

]
−

[
32π2λ̄ + log

m2
N

μ2

]
, (3)

where the two parts can be associated with the pion and nucleon 
tadpoles, respectively (with the divergent part included in λ̄). The 
nucleon tadpoles are not present in the HB amplitude at all, but 
already absorbed into LECs on the level of the effective Lagrangian, 
whereas the pion tadpoles are absorbed by the renormalization 
procedure. This implies that in the HB framework, the LECs at 
higher order will receive large contributions from such chiral loga-
rithms. However, the scales that appear in some chiral logarithms, 
beyond O(ε4), are in principle arbitrary, and our covariant formu-
lation corresponds to one admissible choice. Empirically, we can 
thus confirm that this choice allows one to remove one class of 
large contributions, but due to the lack of a power-counting argu-
ment it remains unclear if this mechanism is universal.

5. Conclusions

In this paper, we have studied whether threshold and sub-
threshold kinematics in π N scattering can be reconciled within 
ChPT by including the �(1232) as an explicit degree of freedom 
and/or using a covariant formulation. To this end, we have per-
formed the matching of π N subthreshold parameters determined 
by Roy–Steiner equations to ChPT, extending previous work [25,
26] by including the �(1232) in a consistent power counting up 
to full one-loop order in the heavy-baryon as well as in a covari-
ant framework. As a result, we have observed a sizable reduction 
of the magnitude of the extracted LECs when the � is included 
explicitly, which, in turn, leads to an improvement of the con-
vergence pattern in the threshold region. The LECs from the �

sector, hA , g1, and b4,5, have been estimated by taking into ac-
count naturalness and large-Nc constraints, and, in the case of hA , 
by taking into account constraints from the � width and N N scat-
tering. Based on the extracted LECs, we have calculated the eight 
leading threshold parameters, which, within uncertainties, become 
largely consistent with the values determined by the Roy–Steiner 
analysis once the � is included explicitly. Moreover, we find that 
the chiral convergence pattern and consistency with the threshold 
region improve further in a covariant formulation. On a technical 
level, we identify terms in the covariant scheme that, once mapped 
onto the heavy-baryon expansion, contribute to the slow-down of 
the expansion, but due to the lack of a rigorous power-counting ar-
gument it is not guaranteed that this mechanism works in general. 
A more profound argument why the covariant resummation im-
proves the phenomenological behavior would be highly desirable.
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Appendix A. Large-Nc constraints

In this appendix we address the derivation of the large-Nc con-
straints for one- and two-pion N� and �� couplings that appear 
within our formalism. The starting point for this analysis is the set 
of consistency equations derived by Dashen, Manohar, and Jenkins 
in [41,42,52–54], which rule the behavior of pion–baryon scatter-
ing in the large-Nc limit.

These consistency conditions result from large-Nc QCD with nu-
cleons interacting with a low-energy pion being an inconsistent 
theory: low-energy π N interactions at large-Nc are dominated by 
the two pole-term graphs [41,42], leading to an overall scattering 
amplitude scaling with Nc , which violates unitarity as well as Wit-
ten’s large-Nc rules for meson–baryon scattering [55]. This incon-
sistency can be cured assuming two main conditions. On the one 
hand, π N interactions at large-Nc require the existence of an infi-
nite tower of degenerate baryon states, which have to be included 
in the π N scattering pole-term projection. On the other hand, 
pion–baryon axial operators (those associated with g A , hA , and g1) 
commute in the large-Nc limit. These commutation relations al-
ready allow one to determine pion–baryon coupling relations: the 
Wigner–Eckart theorem expresses baryon–baryon axial matrix ele-
ments up to an overall unknown scale in terms of Clebsch–Gordan 
coefficients and reduced matrix elements, which can be computed 
solving the large-Nc consistency conditions [41]. In more detail, 
these consistency conditions imply that pion–baryon couplings can 
be related recursively [52]: the large-Nc LO contribution to π N →
π N scattering occurs through a nucleon- and a �-pole exchange, 
proportional to g2

A and h2
A , respectively. Thus, the cancellation of 

this O(Nc) contribution imposes g2
A ∼ h2

A , which fixes the �(1232)

axial coupling up to an overall sign. Nonetheless, one also has the 
freedom to redefine the sign of the � field in Lπ N� , hence a pos-
itive value for hA can be picked without loss of generality. In the 
same way, the same cancellation in π N → π� scattering requires 
g AhA ∼ hA g1, which unambiguously relates g1 ∼ g A , hence fixes 
the sign of g1 relative to g A . Higher relations can be constructed 
proceeding similarly.

Furthermore, pion–baryon axial operators are spin-one and 
isospin-one tensors, and thus they also satisfy a set of commuta-
tion relations with spin and isospin generators, leading to an SU(4) 
spin-flavor contracted algebra for baryons at large-Nc [42,54]. The 
irreducible representations of this contracted algebra are the solu-
tions of the pion–baryon consistency conditions and also allow one 
to identify the pion coupling constant among two baryons within 
the same degenerate tower of J = I = 1/2, 3/2, . . ., states in terms 
of an overall coupling constant [42]

〈 J ′ J ′
3 I ′3|Oia| J J3 I3〉 = g

√
2 J + 1

2 J ′ + 1
(A.1)

×
(

J 1
I3 a

∣∣∣∣ J ′
I ′3

)(
J 1
J3 i

∣∣∣∣ J ′
J ′

3

)
,

where Oia stands for the spatial component of the axial-current 
operator,2 〈B ′|ψ̄γ iγ5τ

aψ |B〉 = 〈B ′|Oia|B〉, and the brackets refer 

2 In the large-Nc limit baryon masses are O(Nc) whereas pion masses are O(1). 
Thus, pion–baryon couplings can be studied in the rest frame of the baryon, in 
which the axial matrix element’s time component vanishes.
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to the Clebsch–Gordan coefficients. Computing these matrix ele-
ments at leading order in ChPT, (A.1) allows one to identify the 
first relations between π N N , π��, and π N� couplings

g A = 2
√

2

3
hA = 5

9
g1. (A.2)

Furthermore, the first 1/Nc correction to Oia vanishes, so the rela-
tions (A.2) are expected to hold within a 1/N2

c uncertainty [41,42,
53]

hA = 3

2
√

2
g A

(
1 + εhA

N2
c

)
, g1 = 9

5
g A

(
1 + εg1

N2
c

)
, (A.3)

where εhA and εg1 are constants of O(1). Their values are un-
known absent an explicit calculation of 1/N2

c effects, so that for 
the large-Nc-based error estimate for g1 in (2) we put εg1 = 1.

Constraints for ππ N� and ππ�� couplings require the anal-
ysis of two-axial-current matrix elements, which, in the large-Nc

limit, can be written in terms of two-body spin, flavor, or axial-
current operators, i.e. the generators of the SU(4) contracted alge-
bra. Furthermore, the product of two-body operators can be ex-
pressed as a sum of a symmetric and an antisymmetric product. 
Antisymmetric combinations are directly given by the commuta-
tion relations of the SU(4) contracted algebra, whereas the sym-
metric products were worked out in [56–59]. Thus, in order to 
compute two-axial-current matrix elements, only one-body pion–
baryon operators have to be calculated, which can be done using 
a baryon state mean-field approximation [55–57,60]. This analy-
sis was carried out in [56,57], and the outcome was matched to 
a three-flavor chiral-Lagrangian result, leading to a set of large-Nc

relations of two-body counterterms. The matching of these results 
to our two-flavor ChPT formalism provides the relations

c�
12 = −c�

11, b4 − b5 = 1

3
√

2
(9c4 − 2c�

4 ),

c�
13 = −6

7

(
2c2 − c�

2

)
, b4 + b5 = 2

√
2

3
c�

11, (A.4)

where, as already introduced in Sect. 2, the various couplings refer 
to the ππ N N-, ππ��-, and ππ N�-vertex operators according 
to

L(2)
π N =

∑
i

ciOπ N
i , L(2)

π� =
∑

i

c�
i Oπ�

i ,

L(2)
π N� =

∑
i

biOπ N�
i . (A.5)

Nevertheless, further relations can be obtained as a direct ap-
plication of the Wigner–Eckart theorem. Considering a large-Nc

degenerate baryon spectrum of states with I = J = 1/2, 3/2, . . ., 
a two-pion–baryon–baryon matrix element is given by

〈 J ′ J ′
3 I ′3|O Ĵ ,i; Î,a| J J3 I3〉 = O Ĵ , Î ( J , J ′)

√
2 J + 1

2 J ′ + 1
(A.6)

×
(

J Î
I3 a

∣∣∣∣ J ′
I ′3

)(
J Ĵ
J3 i

∣∣∣∣ J ′
J ′

3

)
,

where O Ĵ ,i; Î,a refers to the two-pion operator with angular mo-
mentum Ĵ , isospin Î , and third components i and a, respectively, 
and O Ĵ , Î ( J , J ′) denotes the unknown reduced matrix element. 
Thus, (A.6) requires a spin–isospin decomposition of two-pion 
operators involving higher LECs. We perform this decomposition 
based on the operators in (A.5). First, a two-pion vertex at this or-
der can only be decomposed into partial waves with I, J = 0, 1, 2. 
Furthermore, due to Bose statistics, an isovector contribution has 
to be in a relative P -wave, whereas isoscalar and isotensor ones 
can be in a relative S- or D-wave.

In the ππ N N sector, Oπ N
4 contributes with a vector isovec-

tor wave. Oπ N
1 and Oπ N

3 are both pure scalar isoscalar contri-
butions, but Oπ N

2 contributes to both isoscalar S- and D-waves. 
However, the combination that yields a pure t-channel D-wave 
is Oπ N

D = Oπ N
2 − 1

6Oπ N
3 + 1

12Oπ N
1 , which is consistent with res-

onance saturation. On the one hand, the scalar-resonance contri-
bution to c1 and c3 fulfills cS

3 = 2cd/cmcS
1 [48]. Furthermore, at 

large Nc , the scalar couplings satisfy the relation cd = cm [61], so 
the scalar-resonance contribution to Oπ N

D vanishes, as it should. 
On the other hand, the f2(1270) resonance-exchange contribu-
tion is exactly given by the combination of operators in Oπ N

D [62,
63]. Thus, the scalar contribution of Oπ N

2 is exactly given by 
the combination 1

12

(
2Oπ N

3 −Oπ N
1

)
, which provides us with only 

two independent scalar isoscalar operators (c1 − c2/12)Oπ N
1 and 

(c3 + c2/6)Oπ N
3 .

Proceeding in the same way for the ππ�� sector, c�
4 multi-

plies a vector isovector operator, the combinations (c�
2 − 2/3c�

13)

and (c�
11 + 2/3c�

12) come together with an isoscalar D-wave, 
(

c�
1 −

1
24 c�

2 − 1
10 c�

11 − 1
15 c�

12 + 1
36 c�

13

)
Oπ�

1 and 
(

c�
3 + 1

12 c�
2 − 2

15 c�
11 −

4
45 c�

12 − 1
18 c�

13

)
Oπ�

3 are the only two independent scalar isoscalar 

contributions, and c�
12 and c�

13 appear multiplying isotensor S- and 
D-wave terms.

Finally, in the ππ N� sector, (b4 − b5)Oπ N�
4−5 and (b4 +

b5)Oπ N�
4+5 are isovector and isotensor combinations, respectively.

Hence, the application of (A.6) to the scalar isoscalar operators 
provides the relations

c�
1 − 1

24
c�

2 − 1

10
c�

11 − 1

15
c�

12 + 1

36
c�

13 = c1 − c2

12
,

c�
3 + 1

12
c�

2 − 2

15
c�

11 − 4

45
c�

12 − 1

18
c�

13 = c3 + c2

6
, (A.7)

since the normalization condition for baryon states imposes 
O0,0( J , J ) = 1.

In the same way, for the vector isovector operators one finds 
the relations

c�
4 = 9

5

O1,1(3/2,3/2)

O1,1(1/2,1/2)
c4,

b4 − b5 = 3
√

2

2

O1,1(1/2,3/2)

O1,1(1/2,1/2)
c4, (A.8)

and for the isotensor

b4 + b5 = 1

6
√

2

O2,2(1/2,3/2)

O2,2(3/2,3/2)
c�

12. (A.9)

In the diagonal case J = J ′ (and within the same I = J spec-
trum) the reduced matrix element factorizes into standard angular-
momentum reduced matrix elements X Ĵ [64,65]

O Ĵ , Î ( J , J ) = X Ĵ ( J )

(2 J + 1)3/2

XÎ (I)

(2I + 1)3/2
, (A.10)

which due to X1( J ) = √
J ( J + 1)(2 J + 1) produces

O1,1( J , J ) = J ( J + 1)

2
. (A.11)
(2 J + 1)
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The combination of the two-axial-current matrix element con-
straints in (A.4) with those in (A.7), (A.8), and (A.9) then provides 
the relations

b4 − b5 = 3

2
√

2
c4, b4 + b5 = 2

√
2

3
c�

11,

c�
2

2
= c2 − 28(c1 − c�

1 ) − 14

15
c�

11, c�
4 = 9

4
c4,

c�
3 = c3 + 2(c1 − c�

1 ) + 1

9
c�

11, c�
12 = −c�

11,

c�
13

8
= −6(c1 − c�

1 ) − 1

5
c�

11. (A.12)

v
e
b
e
c
p

A

L
a

The constraints derived from the two-axial-vector currents in-
olve all SU(2) LECs but c1 and c�

1 , which appear multiplying pure 
xplicit-symmetry-breaking terms. Since the nucleon and �(1232)

ecome degenerate at large Nc , it is natural to assume that these 
xplicit-symmetry-breaking LECs must be equal in this limit, c�

1 =
1. With this last assumption, (A.12) simplifies accordingly, drop-
ing all the contributions ∝ (c1 − c�

1 ).

ppendix B. Correlation coefficients

In this appendix we collect the correlation coefficients of the 
ECs for the different schemes and chiral orders, see Tables 3 (HB) 
nd 4 (covariant).
Table 3
Correlation matrices at O(ε2), O(ε3), and O(ε4) in the HB-N N (lower triangle) and HB-π N (upper triangle) counting. The units of the 
correlation values are 10−2.

ε2 c1 c2 c3 c4

c1 100 −17 25 −14
c2 −2 100 −97 91
c3 12 −99 100 −95
c4 1 96 −95 100

ε3 c1 c2 c3 c4 d1+2 d3 d5 d14−15

c1 100 42 −32 43 26 −34 12 −28
c2 42 100 −99 97 91 −92 −45 −93
c3 −33 −99 100 −95 −93 93 48 95
c4 43 96 −95 100 86 −90 −41 −90
d1+2 24 89 −90 83 100 −91 −62 −97
d3 −21 −72 74 −70 −81 100 35 97
d5 −6 −70 72 −66 −80 42 100 50
d14−15 −24 −90 92 −86 −96 90 70 100

ε4 c1 c2 c3 c4 d1+2 d3 d5 d14−15 e14 e15 e16 e17 e18

c1 100 −2 13 0 −10 16 3 9 −35 37 −14 −10 −10
c2 −2 100 −96 78 97 −94 −41 −96 26 −14 −39 29 −54
c3 10 −96 100 −84 −95 90 48 93 −13 5 55 −37 69
c4 3 78 −84 100 87 −80 −45 −86 −14 7 −59 22 −80
d1+2 −7 97 −96 88 100 −98 −43 −99 27 −22 −35 30 −56
d3 11 −96 96 −89 −99 100 29 99 −41 30 20 −21 43
d5 1 −48 59 −56 −54 49 100 36 21 −3 47 −38 48
d14−15 6 −97 94 −87 −99 100 47 100 −31 23 30 −24 52
e14 −34 11 8 −30 5 −4 39 −9 100 −86 74 −10 60
e15 40 −45 38 −27 −50 46 18 48 −67 100 −73 5 −56
e16 −28 −1 19 −25 −1 4 37 −2 93 −75 100 −36 94
e17 −10 21 −28 11 23 −20 −34 −18 −8 −14 −13 100 −41
e18 −14 −49 67 −79 −57 59 59 54 75 −24 76 −29 100

Table 4
Correlation matrices at order NLO, N2LO, and N3LO in the covariant approach with (upper triangle) and without (lower triangle) explicit 
� degrees of freedom. The units of the correlation values are 10−2.

NLO c1 c2 c3 c4

c1 100 −17 26 −14
c2 −9 100 −99 94
c3 50 −85 100 −95
c4 4 6 −4 100

N2LO c1 c2 c3 c4 d1+2 d3 d5 d14−15

c1 100 24 −12 28 19 23 10 −17
c2 −9 100 −99 96 88 46 −44 −89
c3 50 −85 100 −95 −88 −43 46 91
c4 4 6 −4 100 82 52 −40 −86
d1+2 −27 64 −71 9 100 18 −63 −96
d3 13 −40 55 −15 −61 100 −27 −13
d5 37 −24 35 −2 −58 −6 100 50
d14−15 31 −48 67 −10 −86 86 31 100

N3LO c1 c2 c3 c4 d1+2 d3 d5 d14−15 e14 e15 e16 e17 e18

c1 100 −3 16 −3 −16 22 14 11 −41 29 −20 −13 −11
c2 15 100 −99 85 75 −95 2 −96 −5 −75 −36 19 −51
c3 58 −67 100 −85 −80 98 3 95 2 76 38 −22 53
c4 6 1 4 100 69 −89 1 −81 −22 −62 −47 −2 −59
d1+2 −36 70 −82 9 100 −75 −54 −60 −30 −49 −67 34 −74
d3 59 −44 88 −24 −79 100 −5 95 −8 80 29 −16 47
d5 21 −25 27 4 −51 12 100 −20 40 −12 52 −28 41
d14−15 45 −58 85 −23 −92 94 28 100 −15 81 15 −12 34
e14 −59 59 −97 −3 85 −93 −25 −91 100 −51 88 3 77
e15 36 −62 72 5 −82 55 45 69 −73 100 −22 −17 −7
e16 −11 60 −51 −20 71 −34 −33 −53 55 −92 100 −12 95
e17 −12 20 −24 −64 29 −7 −20 −7 23 −26 35 100 −27
e18 −23 57 −56 −39 52 −24 −37 −40 52 −74 72 5 100
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