41 research outputs found

    Optically trapped Feshbach molecules of fermionic 161Dy and 40K

    Full text link
    We report on the preparation of a pure ultracold sample of bosonic DyK Feshbach molecules, which are composed of the fermionic isotopes 161Dy and 40K. Employing a magnetic sweep across a resonance located near 7.3 G, we produce up to 5000 molecules at a temperature of about 50 nK. For purification from the remaining atoms, we apply a Stern-Gerlach technique based on magnetic levitation of the molecules in a very weak optical dipole trap. With the trapped molecules we finally reach a high phase-space density of about 0.1. We measure the magnetic field dependence of the molecular binding energy and the magnetic moment, refining our knowledge of the resonance parameters. We also demonstrate a peculiar anisotropic expansion effect observed when the molecules are released from the trap and expand freely in the magnetic levitation field. Moreover, we identify an important lifetime limitation that is imposed by the 1064-nm infrared trap light itself and not by inelastic collisions. The light-induced decay rate is found to be proportional to the trap light intensity and the closed-channel fraction of the Feshbach molecule. These observations suggest a one-photon coupling to electronically excited states to limit the lifetime and point to the prospect of loss suppression by optimizing the wavelength of the trapping light. Our results represent important insights and experimental steps on the way to achieve quantum-degenerate samples of DyK molecules and novel superfluids based on mass-imbalanced fermion mixtures

    Exclusion of a major role for the PTEN tumour-suppressor gene in breast carcinomas

    Get PDF
    PTEN is a novel tumour-suppressor gene located on chromosomal band 10q23.3. This region displays frequent loss of heterozygosity (LOH) in a variety of human neoplasms including breast carcinomas. The detection of PTEN mutations in Cowden disease and in breast carcinoma cell lines suggests that PTEN may be involved in mammary carcinogenesis. We here report a mutational analysis of tumour specimens from 103 primary breast carcinomas and constitutive DNA from 25 breast cancer families. The entire coding region of PTEN was screened by single-strand conformation polymorphism (SSCP) analysis and direct sequencing using intron-based primers. No germline mutations could be identified in the breast cancer families and only one sporadic carcinoma carried a PTEN mutation at one allele. In addition, all sporadic tumours were analysed for homozygous deletions by differential polymerase chain reaction (PCR) and for allelic loss using the microsatellite markers D10S215, D10S564 and D10S573. No homozygous deletions were detected and only 10 out of 94 informative tumours showed allelic loss in the PTEN region. These results suggest that PTEN does not play a major role in breast cancer formation. 1999 Cancer Research Campaig

    Bumble Bees (Bombus spp) along a Gradient of Increasing Urbanization

    Get PDF
    BACKGROUND: Bumble bees and other wild bees are important pollinators of wild flowers and several cultivated crop plants, and have declined in diversity and abundance during the last decades. The main cause of the decline is believed to be habitat destruction and fragmentation associated with urbanization and agricultural intensification. Urbanization is a process that involves dramatic and persistent changes of the landscape, increasing the amount of built-up areas while decreasing the amount of green areas. However, urban green areas can also provide suitable alternative habitats for wild bees. METHODOLOGY/PRINCIPAL FINDINGS: We studied bumble bees in allotment gardens, i.e. intensively managed flower rich green areas, along a gradient of urbanization from the inner city of Stockholm towards more rural (periurban) areas. Keeping habitat quality similar along the urbanization gradient allowed us to separate the effect of landscape change (e.g. proportion impervious surface) from variation in habitat quality. Bumble bee diversity (after rarefaction to 25 individuals) decreased with increasing urbanization, from around eight species on sites in more rural areas to between five and six species in urban allotment gardens. Bumble bee abundance and species composition were most affected by qualities related to the management of the allotment areas, such as local flower abundance. The variability in bumble bee visits between allotment gardens was higher in an urban than in a periurban context, particularly among small and long-tongued bumble bee species. CONCLUSIONS/SIGNIFICANCE: Our results suggest that allotment gardens and other urban green areas can serve as important alternatives to natural habitats for many bumble bee species, but that the surrounding urban landscape influences how many species that will be present. The higher variability in abundance of certain species in the most urban areas may indicate a weaker reliability of the ecosystem service pollination in areas strongly influenced by human activity

    Performance studies of the CMS strip tracker before installation

    Get PDF
    Peer reviewe
    corecore