1,203 research outputs found

    Phase Diagram of β\beta'-(BEDT-TTF)2_2ICl2_2 under High Pressure Based on the First-Principles Electronic Structure

    Full text link
    We present a theoretical study on the superconductivity of β\beta'-(BEDT-TTF)2_2ICl2_2 at Tc=T_{\rm c}=14.2 K under a high hydrostatic pressure recently found, which is the highest among organic superconductors. In the present work, we study an effective model using the fluctuation-exchange (FLEX) approximation based on the results of first-principles calculation. In the obtained phase diagram, the superconductivity with dxyd_{xy}-like symmetry is realized next to the antiferromagnetic phase, as a result of the one-dimensional to two-dimensional crossover driven by the pressure.Comment: 4 pages, 3 figures. accepted for publication in J. Phys. Soc. Jpn. errors correcte

    Two-band Fluctuation Exchange Study on the Superconductivity of β\beta'-(BEDT-TTF)2_2ICl2_2 under High Pressure

    Full text link
    We study the pressure dependence of the superconducting transition temperature of an organic superconductor β\beta'-(BEDT-TTF)2_2ICl2_2 by applying the fluctuation exchange method to the Hubbard model on the original two-band lattice at 3/4-filling rather than the single band model in the strong dimerization limit. Our study is motivated by the fact that hopping parameters evaluated from a first-principles study suggest that the dimerization of the BEDT-TTF molecules is not so strong especially at high pressure. Solving the linearized Eliashberg's equation, a dxy_{xy}-wave-like superconducting state with realistic values of TcT_c is obtained in a pressure regime somewhat higher than the actual experimental result. These results are similar to those obtained within the single band model in the previous study by Kino {\it et al}. We conclude that the resemblance to the dimer limit is due to a combination of a good Fermi surface nesting, a large density of states near the Fermi level, and a moderate dimerization, which cooperatively enhance electron correlation effects and also the superconducting TcT_c.Comment: 6 pages, 8 figure

    Positronium signature in organic liquid scintillators for neutrino experiments

    Full text link
    Electron anti-neutrinos are commonly detected in liquid scintillator experiments via inverse beta decay, by looking at the coincidence between the reaction products, neutron and positron. Prior to positron annihilation, an electron-positron pair may form an orthopositronium (o-Ps) state, with a mean life of a few ns. Even if the o-Ps decay is speeded up by spin flip or pick off effects, it may introduce distortions in the photon emission time distribution, crucial for position reconstruction and pulse shape discrimination algorithms in anti-neutrino experiments. Reversing the problem, the o-Ps induced time distortion represents a new signature for tagging anti-neutrinos in liquid scintillator. In this paper, we report the results of measurements of the o-Ps formation probability and lifetime, for the most used solvents for organic liquid scintillators in neutrino physics (pseudocumene, linear alkyl benzene, phenylxylylethane, and dodecane). We characterize also a mixture of pseudocumene +1.5 g/l of 2,5-diphenyloxazole, a fluor acting as wavelength shifter. In the second part of the paper, we demonstrate that the o-Ps induced distortion of the scintillation photon emission time distributions represent an optimal signature for tagging positrons on an event by event basis, potentially enhancing the anti-neutrino detection.Comment: 6 pages, 9 figure

    Frustrated Spin System in theta-(BEDT-TTF)_2RbZn(SCN)_4

    Full text link
    The origin of the spin gap behavior in the low-temperature dimerized phase of theta-(BEDT-TTF)_2RbZn(SCN)_4 has been theoretically studied based on the Hartree-Fock approximation for the on-site Coulomb interaction at absolute zero. Calculations show that, in the parameter region considered to be relevant to this compound, antiferromagnetic ordering is stabilized between dimers consisting of pairs of molecules coupled with the largest transfer integral. Based on this result an effective localized spin 1/2 model is constructed which indicates the existence of the frustration among spins. This frustration may result in the formation of spin gap.Comment: 4 pages, 5 figures, to be published in J. Phys. Soc. Jpn. 67 (1998) no.

    Frustrated Hubbard ladders and superconductivity in κ\kappa-BEDT-TTF organic compounds

    Full text link
    Half-filled two-leg Hubbard ladders have spin-gapped short-range antiferromagnetic correlations while three-leg ladders have power law antoferromagnetic correlations, and both systems have d_{x^2-y^2}-power law pairing correlations when they are doped. Thus these ladders exhibit some of the phenomenology seen in the layered cuprates. Here we report results for half-filled frustrated Hubbard ladders, based upon ladder segments taken from a tight-binding model of kappa-BEDT-TTF. Although these ladders are half-filled, varying the degree of frustration can drive them across an insulator-metal transition. We suggest that the spin, charge and pairing correlations of these frustrated ladders near the insulator-metal transition provide support for the notion that kappa-BEDT-TTF is a strongly correlated superconductor

    Possible high TcT_c superconductivity mediated by antiferromagnetic spin fluctuations in systems with Fermi surface pockets

    Full text link
    We propose that if there are two small pocket-like Fermi surfaces, and the spin susceptibility is pronounced around a wave vector {\bf Q} that bridges the two pockets, the spin-singlet superconductivity mediated by spin fluctuations may have a high transition temperature. Using the fluctuation exchange approximation, this idea is confirmed for the Hubbard on a lattice with alternating hopping integrals, for which TcT_c is estimated to be almost an order of magnitude larger than those for systems with a large connected Fermi surface.Comment: 5 pages, uses RevTe

    Superconducting Gap Structure of kappa-(BEDT-TTF)2Cu(NCS)2 Probed by Thermal Conductivity Tensor

    Full text link
    The thermal conductivity of organic superconductor kappa-(BEDT-TTF)2Cu(NCS)2 (Tc =10.4 K) has been studied in a magnetic field rotating within the 2D superconducting planes with high alignment precision. At low temperatures (T < 0.5 K), a clear fourfold symmetry in the angular variation, which is characteristic of a d-wave superconducting gap with nodes along the directions rotated 45 degrees relative to the b and c axes of the crystal, was resolved. The determined nodal structure is inconsistent with recent theoretical predictions of superconductivity induced by the antiferromagnetic spin fluctuation.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    Magnetic-Field-Induced Antiferromagnetism in Two-Dimensional Hubbard Model: Analysis of CeRhIn5_5

    Get PDF
    We propose the mechanism for the magnetic-field-induced antiferromagnetic (AFM) state in a two-dimensional Hubbard model in the vicinity of the AFM quantum critical point (QCP), using the fluctuation-exchange (FLEX) approximation by taking the Zeeman energy due to the magnetic field BB into account. In the vicinity of the QCP, we find that the AFM correlation perpendicular to BB is enhanced, whereas that parallel to BB is reduced. This fact means that the finite magnetic field increases TNT_N, with the AFM order perpendicular to BB. The increment in TNT_N can be understood in terms of the reduction of both quantum and thermal fluctuations due to the magnetic field, which is caused by the self-energy effect within the FLEX approximation. The present study naturally explains the increment in TNT_N in CeRhIn_5 under the magnetic field found recently.Comment: 5 page

    Radiation Spectra from Advection-Dominated Accretion Flows in a Global Magnetic Field

    Full text link
    We calculate the radiation spectra from advection-dominated accretion flows (ADAFs), taking into account the effects of a global magnetic field. Calculation is based on the analytic model for magnetized ADAFs proposed by Kaburaki, where a large-scale magnetic field controls the accretion process. Adjusting a few parameters, we find that our model can well reproduce the observed spectrum of Sagittarius A^{*}. The result is discussed in comparison with those of well-known ADAF models, where the turbulent viscosity controls the accretion process.Comment: Accepted for publication in Ap

    Charge Ordering in Organic ET Compounds

    Full text link
    The charge ordering phenomena in quasi two-dimensional 1/4-filled organic compounds (ET)_2X (ET=BEDT-TTF) are investigated theoretically for the θ\theta and α\alpha-type structures, based on the Hartree approximation for the extended Hubbard models with both on-site and intersite Coulomb interactions. It is found that charge ordered states of stripe-type are stabilized for the relevant values of Coulomb energies, while the spatial pattern of the stripes sensitively depends on the anisotropy of the models. By comparing the results of calculations with the experimental facts, where the effects of quantum fluctuation is incorporated by mapping the stripe-type charge ordered states to the S=1/2 Heisenberg Hamiltonians, the actual charge patterns in the insulating phases of θ\theta-(ET)_2MM'(SCN)_4 and α\alpha-(ET)_2I_3 are deduced. Furthermore, to obtain a unified view among the θ\theta, α\alpha and κ\kappa-(ET)_2X families, the stability of the charge ordered state in competition with the dimeric antiferromagnetic state viewed as the Mott insulating state, which is typically realized in κ\kappa-type compounds, and with the paramagnetic metallic state, is also pursued by extracting essential parameters.Comment: 35 pages, 27 figures, submitted to J. Phys. Soc. Jp
    corecore