17,118 research outputs found

    Identifying Gaps and Setting Priorities for Employment and Training Research

    Get PDF
    The report summarizes recent workforce and employment related research, to identify current gaps in employment and training research and makes recommendations for future research processes and priorities that could better inform policy makers, practitioners, job seekers and employers. The report reviews workforce and related research funded by several federal agencies, including the US Departments of Labor, Education, Agriculture, Health and Human Services, and Housing and Urban Development, the National Science Foundation and other federal entities, as well as research undertaken by regional, state and local workforce agencies and philanthrophic organizations

    HST Studies of the WLM Galaxy. I. The Age and Metallicity of the Globular Cluster

    Full text link
    We have obtained V and I images of the lone globular cluster that belongs to the dwarf Local Group irregular galaxy known as WLM. The color-magnitude diagram of the cluster shows that it is a normal old globular cluster with a well-defined giant branch reaching to M_V=-2.5, a horizontal branch at M_V=+0.5, and a sub-giant branch extending to our photometry limit of M_V=+2.0. A best fit to theoretical isochrones indicates that this cluster has a metallicity of [Fe/H]=-1.52\pm0.08 and an age of 14.8\pm0.6 Gyr, thus indicating that it is similar to normal old halo globulars in our Galaxy. From the fit we also find that the distance modulus of the cluster is 24.73\pm0.07 and the extinction is A_V=0.07\pm0.06, both values that agree within the errors with data obtained for the galaxy itself by others. We conclude that this normal massive cluster was able to form during the formation of WLM, despite the parent galaxy's very small intrinsic mass and size.Comment: 14 pages, 5 figures, 1 tabl

    Predicting polarization enhancement in multicomponent ferroelectric superlattices

    Full text link
    Ab initio calculations are utilized as an input to develop a simple model of polarization in epitaxial short-period CaTiO3/SrTiO3/BaTiO3 superlattices grown on a SrTiO3 substrate. The model is then combined with a genetic algorithm technique to optimize the arrangement of individual CaTiO3, SrTiO3 and BaTiO3 layers in a superlattice, predicting structures with the highest possible polarization and a low in-plane lattice constant mismatch with the substrate. This modelling procedure can be applied to a wide range of layered perovskite-oxide nanostructures providing guidance for experimental development of nanoelectromechanical devices with substantially improved polar properties.Comment: 4 pages, submitted to PR

    Path-integral molecular dynamics simulation of 3C-SiC

    Full text link
    Molecular dynamics simulations of 3C-SiC have been performed as a function of pressure and temperature. These simulations treat both electrons and atomic nuclei by quantum mechanical methods. While the electronic structure of the solid is described by an efficient tight-binding Hamiltonian, the nuclei dynamics is treated by the path integral formulation of statistical mechanics. To assess the relevance of nuclear quantum effects, the results of quantum simulations are compared to others where either the Si nuclei, the C nuclei or both atomic nuclei are treated as classical particles. We find that the experimental thermal expansion of 3C-SiC is realistically reproduced by our simulations. The calculated bulk modulus of 3C-SiC and its pressure derivative at room temperature show also good agreement with the available experimental data. The effect of the electron-phonon interaction on the direct electronic gap of 3C-SiC has been calculated as a function of temperature and related to results obtained for bulk diamond and Si. Comparison to available experimental data shows satisfactory agreement, although we observe that the employed tight-binding model tends to overestimate the magnitude of the electron-phonon interaction. The effect of treating the atomic nuclei as classical particles on the direct gap of 3C-SiC has been assessed. We find that non-linear quantum effects related to the atomic masses are particularly relevant at temperatures below 250 K.Comment: 14 pages, 15 figure

    Entanglement entropy and the Berry phase in solid states

    Get PDF
    The entanglement entropy (von Neumann entropy) has been used to characterize the complexity of many-body ground states in strongly correlated systems. In this paper, we try to establish a connection between the lower bound of the von Neumann entropy and the Berry phase defined for quantum ground states. As an example, a family of translational invariant lattice free fermion systems with two bands separated by a finite gap is investigated. We argue that, for one dimensional (1D) cases, when the Berry phase (Zak's phase) of the occupied band is equal to π×(oddinteger)\pi \times ({odd integer}) and when the ground state respects a discrete unitary particle-hole symmetry (chiral symmetry), the entanglement entropy in the thermodynamic limit is at least larger than ln2\ln 2 (per boundary), i.e., the entanglement entropy that corresponds to a maximally entangled pair of two qubits. We also discuss this lower bound is related to vanishing of the expectation value of a certain non-local operator which creates a kink in 1D systems.Comment: 11 pages, 4 figures, new references adde

    Compositional Inversion Symmetry Breaking in Ferroelectric Perovskites

    Full text link
    Ternary cubic perovskite compounds of the form A_(1/3)A'_(1/3)A''_(1/3)BO_3 and AB_(1/3)B'_(1/3)B''_(1/3)O_3, in which the differentiated cations form an alternating series of monolayers, are studied using first-principles methods. Such compounds are representative of a possible new class of materials in which ferroelectricity is perturbed by compositional breaking of inversion symmetry. For isovalent substitution on either sublattice, the ferroelectric double-well potential is found to persist, but becomes sufficiently asymmetric that minority domains may no longer survive. The strength of the symmetry breaking is enormously stronger for heterovalent substitution, so that the double-well behavior is completely destroyed. Possible means of tuning between these behaviors may allow for the optimization of resulting materials properties.Comment: 4 pages, two-column style with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#sai_is

    Polar phonons and intrinsic dielectric response of the ferromagnetic insulating spinel CdCr2_2S4_4 from first principles

    Full text link
    We have studied the dielectric properties of the ferromagnetic spinel CdCr2_2S4_4 from first principles. Zone-center phonons and Born effective charges were calculated by frozen-phonon and Berry phase techniques within LSDA+U. We find that all infrared-active phonons are quite stable within the cubic space group. The calculated static dielectric constant agrees well with previous measurements. These results suggest that the recently observed anomalous dielectric behavior in CdCr2_2S4_4 is not due to the softening of a polar mode. We suggest further experiments to clarify this point
    corecore