146 research outputs found

    cMyc Regulates the Size of the Premigratory Neural Crest Stem Cell Pool

    Get PDF
    The neural crest is a transient embryonic population that originates within the central nervous system (CNS) and then migrates into the periphery and differentiates into multiple cell types. The mechanisms that govern neural crest stem-like characteristics and self-renewal ability are poorly understood. Here, we show that the proto-oncogene cMyc is a critical factor in the chick dorsal neural tube, where it regulates the size of the premigratory neural crest stem cell pool. Loss of cMyc dramatically decreases the number of emigrating neural crest cells due to reduced self-renewal capacity, increased cell death, and shorter duration of the emigration process. Interestingly, rather than via E-Box binding, cMyc acts in the dorsal neural tube by interacting with another transcription factor, Miz1, to promote self-renewal. The finding that cMyc operates in a non-canonical manner in the premigratory neural crest highlights the importance of examining its role at specific time points and in an in vivo context

    Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube

    Get PDF
    Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle– and cell adhesion–related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest–selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein

    Identification of a neural crest stem cell niche by Spatial Genomic Analysis

    Get PDF
    The neural crest is an embryonic population of multipotent stem cells that form numerous defining features of vertebrates. Due to lack of reliable techniques to perform transcriptional profiling in intact tissues, it remains controversial whether the neural crest is a heterogeneous or homogeneous population. By coupling multiplex single molecule fluorescence in situ hybridization with machine learning algorithm based cell segmentation, we examine expression of 35 genes at single cell resolution in vivo. Unbiased hierarchical clustering reveals five spatially distinct subpopulations within the chick dorsal neural tube. Here we identify a neural crest stem cell niche that centers around the dorsal midline with high expression of neural crest genes, pluripotency factors, and lineage markers. Interestingly, neural and neural crest stem cells express distinct pluripotency signatures. This Spatial Genomic Analysis toolkit provides a straightforward approach to study quantitative multiplex gene expression in numerous biological systems, while offering insights into gene regulatory networks via synexpression analysis

    cMyc Regulates the Size of the Premigratory Neural Crest Stem Cell Pool

    Get PDF
    The neural crest is a transient embryonic population that originates within the central nervous system (CNS) and then migrates into the periphery and differentiates into multiple cell types. The mechanisms that govern neural crest stem-like characteristics and self-renewal ability are poorly understood. Here, we show that the proto-oncogene cMyc is a critical factor in the chick dorsal neural tube, where it regulates the size of the premigratory neural crest stem cell pool. Loss of cMyc dramatically decreases the number of emigrating neural crest cells due to reduced self-renewal capacity, increased cell death, and shorter duration of the emigration process. Interestingly, rather than via E-Box binding, cMyc acts in the dorsal neural tube by interacting with another transcription factor, Miz1, to promote self-renewal. The finding that cMyc operates in a non-canonical manner in the premigratory neural crest highlights the importance of examining its role at specific time points and in an in vivo context

    From the abstract to the concrete - Implementation of an innovative tool in home care

    Get PDF
    Background: The implementation of innovations in practice is a critical factor for change and development processes in health and home care. We therefore analyze how an innovative tool - a mobility agreement to maintain physical mobility of home care clients - was implemented in Finnish home care. Methods: Our study involves ethnographic research of 13 home care visits, two years after the mobility agreement was implemented. We analyze the emergence of contradictions, the motives of the actors and the use of artifacts supporting or inhibiting the implementation. Two in-depth cases illustrate the implementation of the mobility agreement in home care visits. Findings: Our findings show that, first, to achieve practice change and development, the innovation implementation requires the overcoming of contradictions in the implementation process. Second, it calls for the emergence of a shared motive between the actors to transform the abstract concept of an innovation into a concrete practice. Third, artifacts, customary to the clients are important in supporting the implementation process. Fourth, the implementation brings about a modification of the innovation and the adopting social system. Conclusions: Innovation implementation should be seen as a transformation process of an abstract concept into a concrete practice, enabled by the actors involved. Concept design and implementation should be closely linked. In health/home care innovation management, the implementation of innovations needs to be understood as a complex collective learning process. Results can be far reaching - in our case leading to change of home care workers' professional understanding and elderly clients' mobility habits.Peer reviewe

    Crestospheres: Long-Term Maintenance of Multipotent, Premigratory Neural Crest Stem Cells

    Get PDF
    Premigratory neural crest cells comprise a transient, embryonic population that arises within the CNS, but subsequently migrates away and differentiates into many derivatives. Previously, premigratory neural crest could not be maintained in a multipotent, adhesive state without spontaneous differentiation. Here, we report conditions that enable maintenance of neuroepithelial “crestospheres” that self-renew and retain multipotency for weeks. Moreover, under differentiation conditions, these cells can form multiple derivatives in vitro and in vivo after transplantation into chick embryos. Similarly, human embryonic stem cells directed to a neural crest fate can be maintained as crestospheres and subsequently differentiated into several derivatives. By devising conditions that maintain the premigratory state in vitro, these results demonstrate that neuroepithelial neural crest precursors are capable of long-term self-renewal. This approach will help uncover mechanisms underlying their developmental potential, differentiation and, together with the induced pluripotent stem cell techniques, the pathology of human neurocristopathies

    Maintaining multipotent trunk neural crest stem cells as self-renewing crestospheres

    Get PDF
    Neural crest cells have broad migratory and differentiative ability that differs according to their axial level of origin. However, their transient nature has limited understanding of their stem cell and self-renewal properties. While an in vitro culture method has made it possible to maintain cranial neural crest cells as self-renewing multipotent crestospheres (Kerosuo et al., 2015), these same conditions failed to preserve trunk neural crest in a stem-like state. Here we optimize culture conditions for maintenance of avian trunk crestospheres, comprised of both neural crest stem and progenitor cells. Our trunk-derived crestospheres are multipotent and display self-renewal capacity over several weeks. Trunk crestospheres display elevated expression of neural crest cell markers as compared to those characteristic of ventrolateral neural tube or mesodermal fates. Moreover, trunk crestospheres express increased levels of trunk neural crest-enriched markers as compared to cranial crestospheres. Finally, we use lentiviral transduction as a tool to manipulate gene expression in trunk crestospheres. Taken together, this method enables long-term in vitro maintenance and manipulation of multipotent trunk neural crest cells in a premigratory stem or early progenitor state. Trunk crestospheres are a valuable resource for probing mechanisms underlying neural crest sternness and lineage decisions as well as accompanying diseases.Peer reviewe

    Identification of a neural crest stem cell niche by Spatial Genomic Analysis

    Get PDF
    The neural crest is an embryonic population of multipotent stem cells that form numerous defining features of vertebrates. Due to lack of reliable techniques to perform transcriptional profiling in intact tissues, it remains controversial whether the neural crest is a heterogeneous or homogeneous population. By coupling multiplex single molecule fluorescence in situ hybridization with machine learning algorithm based cell segmentation, we examine expression of 35 genes at single cell resolution in vivo. Unbiased hierarchical clustering reveals five spatially distinct subpopulations within the chick dorsal neural tube. Here we identify a neural crest stem cell niche that centers around the dorsal midline with high expression of neural crest genes, pluripotency factors, and lineage markers. Interestingly, neural and neural crest stem cells express distinct pluripotency signatures. This Spatial Genomic Analysis toolkit provides a straightforward approach to study quantitative multiplex gene expression in numerous biological systems, while offering insights into gene regulatory networks via synexpression analysis
    • …
    corecore