5 research outputs found

    Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives

    Full text link

    Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies

    No full text
    Mutations in fukutin-related protein (FKRP) cause a common subset of muscular dystrophies characterized by aberrant glycosylation of alpha-dystroglycan (α-DG), collectively known as dystroglycanopathies. The clinical variations associated with FKRP mutations range from mild limb-girdle muscular dystrophy type 2I with predominantly muscle phenotypes to severe Walker–Warburg syndrome and muscle–eye–brain disease with striking structural brain and eye defects. In the present study, we have generated animal models and demonstrated that ablation of FKRP functions is embryonic lethal and that the homozygous-null embryos die before reaching E12.5. The homozygous knock-in mouse carrying the missense P448L mutation almost completely lacks functional glycosylation of α-DG in muscles and brain, validating the essential role of FKRP in the functional glycosylation of α-DG. However, the knock-in mouse survives and develops a wide range of structural abnormalities in the central nervous system, characteristics of neuronal migration defects. The brain and eye defects are highly reminiscent of the phenotypes seen in severe dystroglycanopathy patients. In addition, skeletal muscles develop progressive muscular dystrophy. Our results confirm that post-translational modifications of α-DG are essential for normal development of the brain and eyes. In addition, both the mutation itself and the levels of FKRP expression are equally critical for the survival of the animals. The exceptionally wide clinical spectrums recapitulated in the P448L mice also suggest the involvement of other factors in the disease progression. The mutant mouse represents a valuable model to further elucidate the functions of FKRP and develop therapies for FKRP-related muscular dystrophies

    Probing the oligomeric state and interaction surfaces of Fukutin-I in dilauroylphosphatidylcholine bilayers

    Get PDF
    Fukutin-I is localised to the endoplasmic reticulum or Golgi apparatus within the cell, where it is believed to function as a glycosyltransferase. Its localisation within the cell is thought to to be mediated by the interaction of its N-terminal transmembrane domain with the lipid bilayers surrounding these compartments, each of which possesses a distinctive lipid composition. However, it remains unclear at the molecular level how the interaction between the transmembrane domains of this protein and the surrounding lipid bilayer drives its retention within these compartments. In this work, we employed chemical cross-linking and fluorescence resonance energy transfer measurements in conjunction with multiscale molecular dynamics simulations to determine the oligomeric state of the protein within dilauroylphosphatidylcholine bilayers to identify interactions between the transmembrane domains and to ascertain any role these interactions may play in protein localisation. Our studies reveal that the N-terminal transmembrane domain of Fukutin-I exists as dimer within dilauroylphosphatidylcholine bilayers and that this interaction is driven by interactions between a characteristic TXXSS motif. Furthermore residues close to the N-terminus that have previously been shown to play a key role in the clustering of lipids are shown to also play a major role in anchoring the protein in the membrane
    corecore