99 research outputs found

    Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology

    Get PDF
    Despite the importance of arbuscular mycorrhizal fungi (AMF) to ecosystem processes, few experimental tools are available to quantify AMF contributions to process rates. In this study we examine the efficacy of an experimental system consisting of wildtype (WT) and different non-mycorrhizal (Myc−) genotype pairs of tomato (Solanum lycopersicum L.), specifically focusing on cv Micro-Tom. Two conditions necessary to make such a system useful were examined; (1) that the Myc− genotype(s) do not get colonized in a full soil AMF community background, while the WT does, and B) that there are no non-target effects of the Myc− phenotype on soil microbes. We assessed the second condition by growing Myc− genotypes and WT in non-mycorrhizal soil, monitoring plant growth (root, shoot biomass; root length; root diameter size distribution) and soil microbial community structure (PLFA analysis) as indicators of any changes in root tissue quality or rhizodeposition. All tested Myc− genotypes showed a drastically reduced colonization in mycorrhizal soil. However, in non-mycorrhizal soil, M161 had greater root biomass and M20 greater microbial biomass compared to WT. Only one of the Myc− mutants examined fully met the criteria. We conclude that the BC1/WT pair is a powerful experimental system and recommend caution when using Myc− mutants in mycorrhizal ecology

    Effects of Triazole Derivatives on Strigolactone Levels and Growth Retardation in Rice

    Get PDF
    We previously discovered a lead compound for strigolactone (SL) biosynthesis inhibitors, TIS13 (2,2-dimethyl-7-phenoxy-4-(1H-1,2,4-triazol-1-yl)heptan-3-ol). Here, we carried out a structure-activity relationship study of TIS13 to discover more potent and specific SL biosynthesis inhibitor because TIS13 has a severe side effect at high concentrations, including retardation of the growth of rice seedlings. TIS108, a new TIS13 derivative, was found to be a more specific SL biosynthesis inhibitor than TIS13. Treatment of rice seedlings with TIS108 reduced SL levels in both roots and root exudates in a concentration-dependent manner and did not reduce plant height. In addition, root exudates of TIS108-treated rice seedlings stimulated Striga germination less than those of control plants. These results suggest that TIS108 has a potential to be applied in the control of root parasitic weeds germination

    Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground

    Full text link

    The Role of EDTA in Lead Transport and Accumulation by Indian Mustard

    No full text
    • …
    corecore