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Summary  

 

Especially in low income nations, new and orphan crops provide important opportunities to improve 

diet quality and the sustainability of food production, being rich in nutrients, capable of fitting into 

multiple niches in production systems, and relatively adapted to low input conditions. The evolving 

space for these crops in production systems presents particular genetic improvement requirements 

that extensive gene pools are able to accommodate. Particular needs for genetic development 

identified in part with plant breeders relate to three areas of fundamental importance for addressing 

food production and human demographic trends and associated challenges, which are: facilitating 

integration into production systems; improving the processability of crop products; and reducing 

farm labour requirements. Here, we relate diverse involved target genes and crop development 

techniques. These techniques include transgressive methods that involve defining exemplar crop 

models for effective new and orphan crop improvement pathways. Research on new and orphan 

crops not only supports the genetic improvement of these crops, but they serve as important 

models for understanding crop evolutionary processes more broadly, guiding further major crop 

evolution. The bridging position of orphan crops between new and major crops provides unique 

opportunities for investigating genetic approaches for de novo domestications and major crop 

‘rewildings’. 

 

Keywords: breeding approaches, crop harvestability, crop integration, crop processability, model 

crop exemplars, orthologous genes. 

 

I. Introduction 

 

Global food production has homogenised as an ever-narrower range of calorie-rich but nutritionally-

limited and resource-intensive crops has increased in dominance (Khoury et al., 2014). This has 

enhanced energy availability in diets but endangers human and environmental health by 

contributing to hidden hunger (von Grebmer et al., 2014), climate-related food production shocks 

(Global Food Security, 2015) and planetary resource depletion (Rockström et al., 2009). 

Rediversifying crop production is important to promote a wider range of healthier foods and more 

sustainable and stable production systems (von Grebmer et al., 2014). Efforts to promote 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

diversification however require that policies and research priorities change (Khoury & Jarvis, 2014; 

Gillespie & van den Bold, 2017; Willett et al., 2019). In a revised agenda, new and orphan crops rich 

in valuable micro- and macro-nutrients, capable of fitting into multiple niches in production systems 

(where they provide environmental services as well as direct provisioning services), and relatively 

adapted to low input conditions, have an important role (Gruber, 2017; AOCC, 2019; Mustafa et al., 

2019). These plants either are harvested at present from the wild and are candidates for cultivation 

(potential new crops) or have already entered the domestication process but are generally only 

grown and valued locally or regionally (orphan crops); in both cases, only limited production 

research is currently underway on them (Dawson et al., 2018b). Despite this neglect, new and 

orphan crops have received increased media attention recently (e.g., Economist, 2017), based on 

their potential to address multiple UN Sustainable Development Goals (UN, 2019) in the low income 

nations of Africa (AOCC, 2019), Asia (CFF, 2019) and Latin America (LATINCROP, 2019), and due to 

Western consumers’ interests in new, healthier foods.  

 

As well as new and orphan crops’ production values, they are attractive candidates for research by 

biologists. This is because crop domestication – defined broadly as the genetic changes involved in 

bringing a crop into cultivation and in its continued development within agriculture – has long been 

recognised as providing fascinating insights into fundamental evolutionary processes (Darwin, 1859). 

Clearly, new, orphan and major crops position on a domestication continuum. Furthermore, the 

range of locations over which their extant genetic diversity is distributed also varies. Together, these 

points mean that a spectrum of these plants can allow the extrapolation domains of various possible 

genetic improvement approaches to be explored, as outlined in Figure 1. 

 

In addition to their practical and research values, the technical environment for undertaking new 

and orphan crop genetic studies has greatly improved in the last decade due to significant cost 

reductions in genome characterisation approaches (Varshney et al., 2012). Along with advances in 

‘speed breeding’ (Watson et al., 2018), in participatory improvement methods (Weltzien & 

Christinck, 2017) and in statistical approaches that support crop development (e.g., Meuwissen et 

al., 2001; Lasky et al., 2018), the landscape for new and orphan crop genetical study has therefore 

recently been transformed. 
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The above observations all argue for more attention to be paid to new and orphan crops. Here, we 

consider how the production of these crops may support human and environmental health 

objectives, paying particular attention to the situation in tropical and subtropical low income 

nations. Deficits in key dietary nutrients are often high in these countries, but they also often contain 

extensive inter- and intra-specific variation in wild and agricultural plants that could be better 

utilised for biodiversity-based, sustainable food solutions (Jamnadass et al., 2011). Below, we first 

address the context of global crop production, considering trends over the last half century that 

inform possible new and orphan crop genetic interventions for initial or wider integration of these 

plants into agriculture. We then consider genetic improvement objectives, drawing on existing 

knowledge of the crop ‘domestication syndrome’ (Meyer et al., 2012), our own analysis of plant 

breeders’ perspectives on crop development needs, and considering other food system 

stakeholders’ requirements. We particularly focus on traits and examples of underlying genes to 

address food production and human demographic trends and associated challenges in three areas of 

fundamental importance: to support the integration of crops into production systems; to increase 

crop product processability; and to reduce the farm labour requirements of production. We then 

relate approaches for the genetic improvement of new and orphan crops, considering the role of 

orthologous gene sequences in trait evolution. As part of this exercise, we illustrate an approach for 

defining appropriate genetic improvement pathways for a range of exemplar-requiring new and 

orphan crops, based on comparison with a panel of more widely understood crop models.  

 

Our intention through this review is to indicate genetics-based research avenues to support the 

mainstreaming of new and orphan crops in food production systems. In addition, we illustrate how 

research on these plants can contribute to major crop evolution. Clearly, crop improvement is only 

one aspect to be addressed in mainstreaming production. Further interdisciplinary work, such as to 

understand the social and economic drivers of consumer demand, is also required (Dawson et al., 

2018b). In addition, policy issues related to the use of genetic technologies, such as the effective 

application of the Nagoya Protocol (on access to, and the fair and equitable sharing of the benefits 

arising from the utilisation of, genetic resources), also need to be addressed for new and orphan 

crops (e.g., Østerberg et al., 2017; Halewood et al., 2018). These aspects, while outside the scope of 

the current review, are also of high importance. 
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II. Trends in crop production that inform new and orphan crop promotion 

 

In their analysis of global crop production trends, Khoury et al. (2014) identified crops that were 

relative over-performers (‘winners’) and under-performers (‘losers’) over the approximate half 

century of 1961 to 2009 in terms of total food supply. To explore the wider production 

characteristics of winner and loser crops, we further analysed a representative selection of them. 

Our analysis (Fig. 2) indicated that winner crops are more likely to be produced in lower diversity 

production systems (tending to monoculture) than are loser crops. This is consistent with the global 

reductions in farm production system heterogeneity over recent decades that have been explored 

by other authors (e.g., Clay, 2004; Donald, 2004). Current global production trends thus not only 

result in lower crop food diversity, endangering humans’ nutritional security, but call into question 

the continued availability of agrobiodiversity-related environmental services within farm landscapes 

and therefore the sustainability of food production more broadly (Cardinale et al., 2012). Designing 

new and orphan crops to better support the maintenance and development of diverse production 

systems is therefore a doubly crucial objective. In these systems, the intention should be that new 

and orphan crops complement the production of other crops rather than simply substitute for them, 

requiring appropriate spatial and temporal integration (Dawson et al., 2018a). 

 

To help determine where investments in productivity improvements that are generally considered a 

fundamental requirement in plant breeding could drive production diversification with new and 

orphan crops, we again reviewed available crop production data. We assessed the relative 

contributions of yield (production per unit area, with genetic and/or agronomic contributions 

possible) and total area planted to changes in global crop output over the last half century for a 

panel of 35 exemplar crops (Fig. 3 and Supporting Information Notes S1). Our analysis identified a 

group of nine case study crops where yield contributions to changes in output appeared markedly 

lower than the established trend line. A comparison of these crops with the wider panel revealed 

that most had relatively low annual global gross production values in monetary terms, a situation 

equating to the majority of new and orphan crops that are used locally and regionally only.  

 

It seems reasonable to assume that monetary production value is a proxy for historical levels of 

investment in plant breeding. Thus, the observed differences in crop performance that likely relate 

to breeding investment in our analysis indicate the importance of new breeding efforts to support 
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new and orphan crop development. Furthermore, such differences in performance in relation to 

investment highlight the potential transformative role that new, cheaper advanced breeding 

approaches could have in reducing investment barriers to support significant production gains 

(Varshney et al., 2012). Our analysis would suggest that investment in advanced breeding methods is 

of particular importance for addressing potential improvement challenges for perennial, 

vegetatively-propagated crops. 

 

III. Genetic improvement objectives for new and orphan crops 

 

III.1 New and orphan crop development and the crop domestication syndrome 

 

The starting point for new and orphan crop development is a broad understanding of the 

‘domestication syndrome’. This is generally revealed by comparing crops’ phenotypes with either 

the extant descendant generations or the archaeological remains of their wild progenitors (Meyer et 

al., 2012). Features of the syndrome commonly reported for annual crops include a reduced ability 

to disperse seed, more synchronous seed germination, increased seed size, reduced chemical 

defences and alterations in reproductive shoot architecture (Larson et al., 2014). The syndrome is 

less well defined for perennial crops (Miller & Gross, 2011) but in the case of fruit trees features 

include a shift from seed to vegetative propagation, increased regularity in fruit bearing, enhanced 

fruit size and decreased plant stature (Clement, 2004; Goldschmidt, 2013). 

 

The genes underlying domestication have been partially determined in a range of crops. In an 

authoritative review, Meyer and Purugganan (2013) listed 60 genes whose variants were reported to 

be involved. Of these, 37 were reported to encode transcription factors (see also Schilling et al., 

2018) and 14 to encode enzymes. Loss-of-function alleles were found to be the most common type 

of causative change, followed by alleles varying in cis-regulatory elements altering gene expression. 

Missense mutations (altering protein function) were however also not infrequent. Based on Meyer 

and Purugganan’s (2013) compilation, loss-of-function mutations appeared more often associated 

with ‘domestication’ genes (that control the classic domestication syndrome) and positive change-

of-function mutations with ‘diversification’ genes (which allow crops to adapt to particular uses and 

agro-ecological environments). Under this typology, ‘domestication’ genes may be initial targets for 
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manipulation in new crop development, while ‘diversification’ genes may be targets in orphan crops 

that have already passed through initial crop development stages. In the rest of this review, we 

however generally refer to both these sets of genes as ‘domestication-related’ as the distinction 

between categories is not always clear or useful. 

 

Around half of the genes compiled by Meyer and Purugganan (2013) were related to fruit and seed 

properties. Among these genes, those controlling composition and the palatability and processability 

of crop food parts were most prominent. For example, the WAXY gene in rice (Oryza sativa) (and 

orthologues in other crops) controls the amylose versus amylopectin ratio in grain starch, which 

determines grain processability (as discussed further later in this review). In addition, just over one-

third of the compiled genes were reported to influence plant architecture or crop flowering time, 

both of which are important features for determining crop integration into production systems. 

Finally, seven of the identified genes were related to seed head non-shattering and thus to crop 

harvesting efficiency and crop labour requirements. Processability, integration into production 

systems and the labour requirements of production have all been identified as important features 

for new and orphan development, as we discuss further below. A focus on several of the genes 

compiled by Meyer and Purugganan (2013) is therefore of relevance. 

 

III.2. Stakeholders’ perspectives on traits for new and orphan crop improvement 

 

Understanding producers’ constraints is crucial for determining sound improvement objectives for 

new and orphan crops, but to date little systematic information has been available. To help remedy 

this gap, we have gathered information from plant breeders on new and orphan crop improvement 

targets for Sub-Saharan Africa, where these plants are recognised to have a particularly important 

role to play in supporting human nutrition and sustainable agriculture (AOCC, 2019). Although a 

survey of breeders’ views can only provide a partial picture of crop development needs since 

breeders are only one stakeholder group in crop promotion (along with farmers, consumers, 

retailers, food processors, etc.; Dawson et al., 2018b), they are perhaps in the best position to grasp 

sector-wide concerns that can inform crop improvement targets. In addition, existing contact 

networks mean that they are a relatively easy stakeholder group to gather information from.  
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Our survey of breeders’ views (described in Supporting Information Notes S2) indicated that crop 

pest and/or disease attack was the most frequently mentioned priority genetic or management 

constraint for new and orphan crops, while lack of access to suitable planting material was by far the 

most mentioned important input constraint (Fig. 4a), echoing concerns on varietal delivery that we 

return to later in this review. Consistent with these production constraints, breeders most 

mentioned pest and disease tolerance or resistance as the priority trait category for genetic 

improvement action, followed by yield per se (i.e., production independent of pests, diseases, etc., 

that also influence yield). In addition, improved harvestability was the fifth most mentioned 

important area for genetic improvement (Fig. 4b).  

 

Our survey of breeders also indicated that improvement in crop planting and/or establishment 

methods was the most mentioned priority agronomic management intervention required to support 

new and orphan crop production, closely followed by soil fertilisation measures. The proper timing 

of seasonal field activities was the fourth most mentioned required agronomic intervention and the 

diversification of production systems the fifth (Fig. 4c). As expected, the priority constraints and 

interventions mentioned by breeders depended on the part of the plant used for food (Fig. 4d). 

Significantly, when asked about the likelihood of success of their suggested priority interventions, 

breeders considered agronomic management actions to be more likely to be successful than genetic 

improvement actions (Fig. 4e). They however believed both types of action to overall have high 

potential for success, suggesting a useful role for a variety of breeder-supported context-specific 

genetic improvement methods, in conjunction with agronomic developments. Below, we further 

consider the results of our breeders’ survey in the context of additional stakeholders’ constraints 

and the global trends that also inform the efficient production and use of new and orphan crops, 

under three trait categories of specific importance. 

 

Traits for greater production integration 

Breeders’ emphasis on yield, along with knowledge of global crop production and consumption 

trends (described in Section II), support the view that diversification of the world’s crop portfolio 

requires productivity enhancements in new and orphan crops, to enable them to successfully 

compete with major crops for farmers’ attention (Tadele, 2017). Diversification is however not only 

about increasing the range of crops grown, but is concerned with developing more efficient, 

sustainable and stable integrated production systems through approaches such as intercropping 
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(Brooker et al., 2015). An emphasis on traits that maximise positive crop-crop interactions in terms 

of yields, sustainability and stability is therefore crucial for new and orphan crop development. This 

requirement appears not to have been fully recognised by the plant breeders included in our survey: 

while several breeders indicated the importance of crop diversification as an agronomic 

management intervention, less attention was given to this aspect in the trait categories identified for 

genetic improvement. This discrepancy could indicate either an inherent difficulty in intercrop 

breeding or a conceptual disconnect in breeders’ current thinking, perhaps due to their tendency to 

work at any one time on only a single crop. 

 

Insights into plant species’ interactions in natural ecosystems may be useful for designing improved 

crop-crop interactions. Studies reporting the genetics (and epigenetics; Alonso et al., 2019) of 

reciprocal helping between plants are however currently relatively scarce; strategies have though 

been outlined through which natural genetic variants underlying mutualisms between pairs of plant 

species could be characterised (Subrahmaniam et al., 2018). Obvious ‘interaction traits’, likely to 

influence resource-use complementarity or conflict among crops, are those related to plant 

architecture, growth rate, mycorrhizal associations and phenology (Vandermeer, 1992; Litrico & 

Violle, 2015). The currently cultivated gene pools of orphan crops still contain variation in important 

interaction traits because this diversity has not been lost through monoculture breeding as for the 

advanced cultivars of major crops (Francis & Smith, 1985); there are therefore significant 

opportunities for designing more effective intercrop systems involving them. This depends of course 

on suitable breeding methods being made available, a topic we return to below. 

 

Traits for increased product processability 

Our current survey of production constraints only obtained information from plant breeders, but as 

already noted it is also important to consult others regarding crop target traits, including farmers, 

consumers, retailers and food processors, in order to ‘co-construct’ more optimal crop development 

targets. For consumers, traits related to nutritional content, food acceptability, palatability and 

cookability are especially important. In new and orphan root crops and legume seeds in particular, 

the presence of anti-nutritional compounds such as phytic acid, saponins, polyphenols, lathyrogens, 

α-galactosides, protease inhibitors, α-amylase inhibitors and lectins can be of concern (e.g., Sousa et 

al., 2015). Reductions in these compounds mean that foods require less cooking or other processing 

to remove them and make consumption safe (Yerra et al., 2015). In turn, this allows poor consumers 
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to make healthier food choices. This is because the high energy costs for cooking these foods, which 

place a large burden on families’ finances, are reduced, as are the labour requirements of food 

preparation, which fall especially on women (Balmer, 2007). Because a number of anti-nutritional 

compounds play important roles in protecting new and orphan crops from pest and disease attack, 

however, breeding objectives may focus on altering plant part allocation of these chemicals (e.g., 

avoiding the edible portion of the crop) or increasing their lability during cooking or other 

processing, rather than their reduction or removal per se (Nour-Eldin & Halkier, 2013). 

 

With the increasing reliance by growing urban populations in low income nations on processed 

foods (Popkin et al., 2012), improvements in a range of processability traits for new and orphan 

crops is a priority. This allows the wider incorporation of nutritious new and orphan crop ingredients 

in processed food reformulations. Of relevance is the broad physical properties of ingredients and 

their chemical compositions, which influence flavour, texture, stability and overall consumer 

acceptance (e.g., Sun-Waterhouse et al., 2014). A good example is the ratio of amylose to 

amylopectin in cereal starches: this influences the functional properties of derived processed foods 

as well as their nutritional and physical characteristics (Lagassé et al., 2006). The food industry is 

particularly interested in identifying novel functional ingredients as surfactants, thickeners and 

strain-hardening biopolymers that can support more efficient, healthier processed food production; 

with their diverse characteristics, new and orphan crops may present novel opportunities for such 

uses, once they have been more fully characterised through tensiometry, rheometry and other 

analytical approaches to measure food properties (e.g., Bakare et al., 2016). 

 

Traits for reduced farm labour requirements 

The importance of reducing the labour requirements of new and orphan crop production, and of 

coordinating these requirements with other farm activities, is evident from our survey of breeders 

who indicated the need to improve crop harvestability via genetic means and the need for attention 

to the proper timing of seasonal field activities. The significant rural-to-urban transition currently 

underway in many low income nations (Kessides, 2005) reinforces the need for reducing rural labour 

requirements. At the same time, new concentrations of available labour in urban areas may support 

urban and peri-urban food transformation, reinforcing the importance of improving crop 

processability traits.  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Trait categories influencing rural labour requirements and/or the timing of these requirements 

include seed and fruit dispersal or retention, seed and fruit size, plant form and crop phenology. 

Plant form and phenology are also crucial for crop integration, as described above, while variation in 

crop phenology is also important for avoiding seasonal gluts in food supply that affect market 

profitability and wastage. Especially for perennial crops, the length of the plant’s juvenile phase is an 

important factor determining the return to labour. For de novo crops, the vision of reducing the 

labour needed to collect from the wild may serve as an important stimulus for initial cultivation 

(Schippmann, 2002), thereby implicating a need to focus on basic genetic traits related to 

propagation and ex situ establishment ability. 

 

III.3. Candidate genes for new and orphan crop priority improvement trait categories 

 

Some of the high priority trait categories identified for new and orphan crop improvement, such as 

pest and disease resistance and yield per se, align with the development profiles of most major 

crops. In this section, however, we focus on the three trait categories of specific importance for 

driving new and orphan crop development and adoption that were identified above. Illustrative 

cases of involved genes, which may present potential targets for manipulation in crop development, 

are summarised in Table 1. Specific examples are also given below. 

 

For production system integration, the important feature of flowering time determines the maturity 

date of a crop and therefore its intercrop effectiveness (Yu et al., 2015). The genes controlling 

flowering pathways have been identified in a range of crops (Nakamichi, 2015) and the involvement 

of orthologous sequences across crops has been established (Calixto et al., 2015). Reduced 

photoperiod sensitivity, resulting from allelic variation in a subset of these genes, has played an 

enormous role in the historic range expansion of many major crops. In barley (Hordeum vulgare), for 

example, a network of ~20 circadian clock-related genes are known to modulate flowering time; the 

northern expansion of the crop from the Fertile Crescent was associated with the emergence of day-

length insensitive forms (Russell et al., 2016). The manipulation of related genes in new and orphan 

crops could similarly facilitate range expansion and support the development of more effective 

intercrop combinations. 
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For product processability, examples related to anti-nutritional compounds and starch chemical 

composition are illustrative of possible genetic manipulations. In several legumes, phytates are the 

primary reserve of phosphorous in the seed, but these chelate iron and zinc that are essential in 

human diets (Petry et al., 2015). A low phytic acid mutant isolated in common bean (Phaseolus 

vulgaris), associated with change in an ABC transporter gene, demonstrated enhanced iron 

bioavailability in porridge made from its dried seed, reducing the cooking time needed to reach 

acceptable iron absorption levels (Petry et al. 2013). Various orphan crop legume seeds with high 

phytate levels may have levels similarly reduced through related mutations. In the case of starch 

composition, as already noted the ratio of amylose to amylopectin in rice grain is controlled by the 

granule-bound starch synthase gene WAXY, while its orthologues have a similar function in other 

cereals and pseudo-cereals, including the orphan crops of foxtail millet (Setaria italica) and the grain 

amaranths (e.g., Amaranthus cruentus). The waxiness of grain not only affects its attractiveness for 

consumers, but it influences the food processing and digestibility characteristics of seed, not always 

in beneficial ways for modern diets. For example, waxy grain types may be easier to process, but 

they may also have a higher glycaemic index that contributes to type 2 diabetes risk in humans (Kaur 

et al., 2016). Trade-offs in reaching breeding objectives for processability traits are therefore 

required. 

 

Regarding labour requirements, the standard domestication syndrome trait of seed or fruit retention 

is crucial in influencing crop harvestability (Meyer et al., 2012). In addition, fruit size is an important 

characteristic, especially for fleshy-fruited crops where the ripe fruit is eaten whole. This is because 

larger fruits are easier to harvest to reach the same collected weight, particularly when the crop is 

handpicked. The genetic control of fruit size has been extensively researched in tomato (Solanum 

lycopersicum), the model species for other fleshy-fruited crops (van der Knaap et al., 2014); some of 

the identified genes are known to have orthologues in other plants. 
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IV. Approaches for genetic improvement 

 

IV.1. Available genetic improvement methods for new and orphan crops 

 

Ideotype targets and an understanding of the inheritance and genetic architecture of defining traits 

determine suitable approaches for the genetic improvement of any particular new or orphan crop 

(Section III). Especially in low income nations, it is also necessary to consider how improved varieties 

will be delivered to farmers. A detailed assessment of planting material delivery options is outside 

the scope of this review, but strategies are specific to breeding approach (Walker et al., 2014). In 

general, however, an emphasis on working with farmers in varietal evaluation and in the 

multiplication of planting stock is a useful means of building effective bridges between crop breeding 

and crop production (Weltzien & Christinck, 2017). This context should be considered when selecting 

from the possible breeding and selection options described below.  

 

Advanced and conventional breeding  

Marker-assisted selection is used widely in major crop development and has begun to be applied to 

orphan crops. Examples include the annual orphan crops of foxtail millet (Setaria italica; Jia et al., 

2013) and pigeonpea (Cajanus cajan; Varshney et al., 2017) and, increasingly, a range of perennial 

plants (Iwata et al., 2016; Migicovsky & Myles, 2017). However, the relatively high costs of 

phenotyping remain a constraint in most cases (Varshney et al., 2012). This is especially so for 

perennial crops that require several years of growth before they can be properly evaluated and that 

have large life forms that demand considerable space in field trials.  

 

Applying genome-wide association scans, Cichy et al. (2015) identified genomic regions associated 

with variation in the so-called “cooking time trait” in a diversity panel of common beans. Although 

perhaps not strictly an orphan crop itself because of relatively high research investments, common 

bean can be considered representative of several orphan legumes. The finding of associations 

between specific genomic regions and cooking time in legumes is important because long cooking 

times limit the more efficient utilisation of the seed as food (see discussion in Section III.2). Cichy et 

al. (2015) found statistically significant associations between cooking time and SNPs on three P. 
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vulgaris chromosomes, with the strongest associations on chromosome 6 (Pv06). Proximate coding 

sequences on Pv06 included two cation/H + exchanger genes, one homologous to AtCHX3 and the 

other to AtCHX4 (further information in Table 1). In arabidopsis (Arabidopsis thaliana) these genes 

are involved in calcium transport, which corresponds with evidence that Ca2+ plays an important role 

in storage-induced increases in common bean’s required cooking time (Jones & Boulter, 1983). 

Similar to major crops (Liu & Yan, 2019), there is clearly high future potential for the further 

application of genome-wide association scans to dissect quantitative traits for new and orphan 

crops, if appropriate resources are allocated to phenotyping. 

 

Genomic selection (Meuwissen et al., 2001) uses phenotypic and genomic data collected from 

training populations to predict the breeding value of genome-characterised but un-phenotyped 

breeding materials (known as genomic estimated breeding values). To date the approach has been 

most effectively adopted for complex trait breeding in animals (Georges et al., 2019), but it is 

increasingly being used to breed for polygenic traits in plants (Crossa et al., 2017), exploiting cross-

sectoral synergies in possible methods (Hickey et al., 2017). As currently practised, the accuracy of 

prediction quickly decays as a function of the genetic distance between the training and 

experimental germplasm sets; for example, comparisons across animal breeds can be difficult (Hayes 

et al., 2009). However, advances are being made to extend useful comparisons to more distantly 

related materials by considering sequence context (Druet et al., 2014) and wider biological priors 

(e.g., variant annotations, candidate genes and known causal mutations; MacLeod et al., 2016). The 

ability to expand comparisons from relatively well studied crops to genetically-related but under-

phenotyped new and orphan crops could be of key importance.  

 

The efficacy of genomic selection is currently being tested on cassava (Manihot esculenta), a 

vegetatively-propagated orphan annual root crop (Wolfe et al., 2017). A further orphan crop 

example where the approach is beginning to be explored is finger millet (Eleusine coracana), a seed-

propagated annual grain (discussed further below). As for standard marker-assisted selection, the 

primary limitation in applying genomic selection to new and orphan crops is the absence of 

phenotypic data from relevant training populations (Varshney et al., 2012). The application of the 

approach could in theory however be especially effective for slow-maturing perennial new and 

orphan crops which are difficult to directly phenotype for key production traits (Isik et al., 2015). 

Genomic selection may also be particularly effective when the underlying biological basis of key 

traits is poorly understood, as is the case with many new and orphan crops. 
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Along with the advent of new technological approaches for crop genetic improvement there is an 

emerging reconsideration of breeding methods that effectively address spatial and temporal 

interactions among the different biological components in diverse production systems (Litrico & 

Violle, 2015). The identification of target crop-crop interaction traits in this breeding is partially 

informed by research on natural systems, as outlined earlier in this review (Section III.2). In 

agricultural systems, however, it is also possible to ‘force’ positive relationships among crop 

diversity, yield and overall production stability that are unrealisable naturally due to different 

balancing trade-offs (Denison et al., 2003). Significant research is though still required to explore 

context-appropriate intercrop breeding techniques; the approaches to intercrop breeding that have 

been proposed so far have rarely been implemented (Hamblin et al., 1976; Wright, 1985). 

 

Theoretically, genomic selection offers clear advantages for intercrop breeding as it can better 

manage the expected complex genetics of interaction traits and it reduces the need for large 

experimental plots to evaluate crop-crop interactions. In our own research (JB, JH, SH, IKD, in 

collaboration with the International Crops Research Institute for the Semi-Arid Tropics) we are 

stochastically modelling the effectiveness of intercrop breeding with and without the application of 

genomic selection for finger millet and the accompanying legume crop of groundnut (Arachis 

hypogaea) (Fig. 5). These crops are grown together in East Africa within low input smallholder 

production systems that can benefit significantly from exploiting crop-crop synergies (Yu et al., 

2015). Better varietal combinations of finger millet and groundnut could support higher yielding, 

more stable and more sustainable agricultural production in the region. The importance of cereal-

legume combinations globally means that our modelling also has broader application. 

 

Speed breeding, which reduces the generation interval in breeding programmes by altering the 

photoperiod exposure of day length sensitive plants to accelerate their development (normally 

through prolonging “long-day” plants’ exposure to light; Ghosh et al., 2018), is another approach 

now being applied to orphan crops. Application includes to the long-day annual legume chickpea 

(Cicer arietinum), for which the number of possible generations per year has been increased from 

three to six (Watson et al., 2018). Application has also been successful with “short-day” annual grain 

amaranth crops (Amaranthus spp.; Stetter et al., 2016). Speed breeding should be especially 

effective in combination with genomic selection as this allows selection during rapid cycling where 
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full phenotypic data are not collected (Li et al., 2018a). It has been proposed that the costs of the 

speed breeding approach for new and orphan crops in low income nations could be reduced through 

transportable “speed breeding capsules”, consisting of shipping containers retrofitted with 

temperature and light controls, irrigation systems and greenhouse benches (Chiurugwi et al., 2019). 

 

Participatory breeding and selection 

“Citizen science” projects that evaluate crop germplasm have been conducted successfully in high 

income nations, as illustrated by Würschum et al. (2019) who explored genotype-environment 

interactions in soybean (Glycine max) based on data collected by 1,800 gardeners located across 

Germany. Even higher potential for participatory experimentation exists in low income nations 

where rural populations are greater and include many active small-scale farmers. If properly 

supported, these communities can meaningfully evaluate genetic materials within a range of target 

environments and cropping systems, and provide further information on crops’ production and 

consumption.  

 

In Central Africa, for example, participatory domestication methods have been successfully applied 

to genetically improve new and orphan fruit tree crops including the semi-domesticated safou 

(Dacryodes edulis) and the incipiently domesticated bush mango (Irvingia gabonensis and I. 

wombolu) (Jamnadass et al., 2011). Here, scientific advances in tree selection, propagation and fruit 

processing were combined with local communities’ experiences in tree management. Applying 

simple selection methods and basic vegetative propagation approaches resulted in significant yield 

and quality gains from existing wide gene pools of these fruit trees and the effective fixation of these 

polygenic traits (Tchoundjeu et al., 2006). Vegetative propagation also significantly reduced the 

interval between crop establishment and production, and produced smaller, easier to harvest, 

plants, thereby increasing returns to farmers’ labour. By linking production to processing and market 

development, the participatory tree domestication approach has spread in the Central Africa region 

(Asaah et al., 2011). 

 

Participatory approaches have also been applied in the Middle East and North Africa to cereals, 

combining centralised and decentralised breeding through the deployment to farmers of crop 

germplasm panels assembled by breeders and scientists (Mustafa et al., 2006). The participatory 
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approach is considered especially useful for the heterogeneous production conditions common in 

low income nations and when the preference for specific crop traits is poorly understood (Bhargav & 

Meena, 2014). Both of these conditions often apply for new and orphan crops.  

 

Environment-based selection 

“Landscape genomic” approaches to crop development are particularly relevant for perennial plants 

that exist currently mostly as wild populations adapted over many generations to local abiotic 

conditions (Bragg et al., 2015). This is because the ‘in situ’ decision making that is involved avoids the 

considerable time and effort required to evaluate perennial crop germplasm in formal field trials. In 

the approach, genomic data collected from plants growing in natural populations are correlated with 

environmental variables using statistical methods that account for underlying adaptively neutral 

genetic structure caused by genetic drift (Coop et al., 2010). Established correlations can then, in 

theory, be used to screen wider germplasm panels to determine favourable allele compositions for 

particular production conditions. Comparisons are facilitated by the large number of georeferenced 

interpolated environmental data sets now available digitally, including temperature and 

precipitation profiles (e.g., Fick & Hijmans, 2017) and soil types (e.g., ISRIC, 2019). In a landscape 

genomic analysis covering the native range of barrel medic (Medicago truncatula, a legume), for 

example, Guerrero et al. (2018) made use of soil maps to identify soil environment as a key driver of 

adaption, with a high number of SNPs associated with soil variables, including SNPs in candidate 

genes involved in nodulation/symbiotic nitrogen fixation.  

 

If local adaptation can be assumed to have occurred during orphan crop development and 

ecogeographic range expansion, the landscape approach can be applied to orphan crop landraces as 

well as to new and orphan crops’ wild germplasm. In this case, meta-analysis of multiple crops’ 

progenitors and landraces in the same geographic space could provide comparative insights into 

mechanisms of natural and human adaptation. Statistical approaches are now available that 

combine the results of multi-common garden genome-wide association studies, which explore the 

genetic basis of phenotype-trial site interactions, with wild and/or landrace sample environment-

genomic correlations (Lasky et al., 2018). This can further facilitate an understanding of causal loci 

for adaptation and help to define appropriate strategies for new and orphan crops’ range 

expansions. 
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IV.2. Orthologous gene involvement in new and orphan crop trait evolution 

 

An understanding of the extent to which the evolution of a common phenotype among existing 

crops has involved mutations in orthologous gene sequences as opposed to changes in different 

genes is of clear practical relevance for new and orphan crop development (Pickersgill, 2018). 

Clearly, the greater the extent of orthologous gene involvement in common trait evolution in past 

crop domestications, then the more attractive it is to target change to related gene sequences in 

new and orphan crops to drive their domestication forward. Indeed, the important roles of 

orthologous gene sequences in crops’ domestications have been widely revealed (Martin & 

Orgogozo, 2013). For example, orthologous sequences control at least a portion of variation in 

flowering time (Calixto et al., 2015), plant height (Jia et al., 2009), grain stickiness (Meyer & 

Purugganan, 2013), seed size (Tao et al., 2017), seed dormancy (Wang et al., 2018) and seed and 

fruit dispersal or retention (Li & Olsen, 2016) across various crops (see examples in Table 1). As 

variation for a number of these traits underlies new and orphan crop development priorities, 

focusing on relevant gene orthologues, defined by comparisons with suitable crop exemplars 

(further addressed in Section IV.3), is clearly of value. 

 

As would be expected, in general the more closely related two crops are then the more likely they 

are to share the same underlying genes and genetic architectures for in-common phenotypes 

(Lenser & Theißen, 2013). However, orthologous genes are involved in determining common 

phenotypes even when crops are evolutionarily distant, as is evident from some of the examples in 

Table 1 of our current review. For example, allelic variants in orthologues of the rice WAXY gene 

control starch composition not only in a range of cereals and pseudo-cereals from Poaceae to 

Amaranthaceae (see Box 2 in Meyer & Purugganan, 2013), but even in some non-cereal crops (e.g., 

Wang et al., 2017). On the other hand, multiple domestications within a single crop species may 

involve unrelated genes to reach a common phenotype (Meyer & Purugganan, 2013), illustrating the 

breadth of possible mechanisms involved in crop evolution and that assumptions of orthology 

should be guarded.  

 

In general, the literature suggests that the genes associated with initial domestication processes are 

more in common across crops than the genes associated with diversification (Lai et al., 2018; though 

see discussion in Pickersgill, 2018). This would suggest that the exploitation of crop-crop orthologous 
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gene relationships could be more beneficial when domesticating entirely new crops (de novo 

domesticates) rather than when further developing orphan crops that have already passed through 

initial domestication barriers. Importantly, however, even if in many cases crops’ common 

phenotypes were reached via alterations in unrelated genes in past domestications, this does not 

preclude the targeting of orthologous sequences in the further domestication of orphan crops, as a 

transgressive approach from previous domestication pathways may still prove effective and could be 

more efficient (Lenser & Theißen, 2013). Indeed, the use of advanced molecular breeding methods 

such as gene editing to effect changes in domestication-related gene orthologues has been shown to 

be effective for orphan crops in some circumstances: for example, recent research on the 

solanaceous orphan crop groundcherry (Physalis pruinosa) using CRISPR/Cas9 to mutate 

orthologues of tomato domestication and improvement genes has shown promise (Lemmon et 

al., 2018).  

 

Clearly, the effectiveness of different breeding approaches will depend on the varying underlying 

basis of traits’ evolution (Østerberg et al., 2017). Applying knockout CRISPR/Cas9 gene editing to 

new and orphan crop gene orthologues of known cross-crop, large effect, initial ‘domestication’ 

genes, for which change has often been associated with loss-of-function mutations, seems advisable. 

In contrast, application to smaller effect ‘optimisation’ or ‘diversification’ genes, where a less clear 

orthology exists and where change has more often been associated with gains in function, seems 

less advisable. The reduction or removal of anti-nutrients via CRISPR/Cas9 or other mutational (e.g., 

TILLING) disruption of dedicated orthologous genes in conserved metabolic pathways (e.g., Emmrich, 

2017) could also be particularly effective. 

 

IV.3. Identifying exemplar crops to inform new and orphan crop domestication pathways 

 

To determine appropriate genetic improvement pathways for new and orphan crops the 

development routes of more widely researched crops should be considered. If orthologous 

approaches to improvement are to be best exploited, identifying a given new or orphan crop’s most 

relevant more widely studied exemplar requires considering the genetic relatedness of crop pairs. 

The definition of exemplars also requires consideration of crops’ biologies. To illustrate how 

appropriate exemplars may be identified on the basis of genetic relatedness and crop biology, we 

have compared a group of exemplar-requiring new and orphan crops with a panel of possible crop 
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models using taxonomy as a proxy for genetic relatedness (as described in Supporting Information 

Notes S3; raw data for analysis provided in Supporting Information Table S1). In our analysis, 

possible exemplars include major crops and new and orphan crops chosen based on the availability 

of crop production, trade and food balance data in FAOSTAT (2019) databases. These data provide 

some contextual understanding of recent crop development (e.g., see Fig. 3). The exemplars chosen 

also represent a range of production biologies, including perenniality and vegetative propagation. In 

our comparison, the exemplar-requiring new and orphan crops we chose are all considered 

important for supporting human nutrition in Africa. The results of our analysis, illustrated in Figure 6 

(detailed results provided in Supporting Information Table S1), revealed promising pairings between 

exemplar-requiring and exemplar crops that were not always intuitive. In addition, depending on the 

relative emphasis given to biology and taxonomy in the analysis (adjusting from a 1:1 

biology:taxonomy weighting to 2:1 or 1:2 weightings when calculating paired crop distances), some 

change in pairings was evident.  

 

Greater insights into new and orphan crop genomes are emerging from current sequencing efforts. 

As only one example, the African Orphan Crops Consortium is assembling genomes and 

resequencing representative germplasm panels for 101 new and orphan crops (AOCC, 2019). These 

plants represent a prioritised list of exotic and indigenous species to Africa that are important for 

meeting human nutritional needs and providing other services that support farmers’ livelihoods on 

the continent. These other services include those that are not directly provisioning, such as 

environmental services, where crop interactions with each other and with other biotic components 

of farm landscapes are important. With such sequencing efforts underway, it is possible to focus 

more intently on questions of genetic relatedness in efforts to identify new exemplar crops that 

have the potential to support transgressive, orthologue-based approaches to domestication. 

 

V. Future outlook 

 

Comparative research on crops along a domestication continuum allows the value of different 

genetic improvement approaches to be determined (Fig. 1). Should more focus, for example, be 

placed on environmentally-based in situ selection strategies for wild relatives and progenitors of 

major crops? And how much more effort should be given to develop ex situ collections of potential 

new crops, in order to apply advanced and/or conventional breeding approaches to them? In 
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particular, it is evident that the central bridging positioning of orphan crops provides unique 

opportunities for investigating genetic improvement approaches that both support de novo 

domestications and major crop ‘rewildings’ (sensu Palmgren et al., 2015). In the case of new 

domestications, for example, it is important to understand how effectively crop development can be 

driven by the knockout of candidate domestication-related genes, using modern gene editing 

technologies (Østerberg et al., 2017). If a comparison of the gene sequences of an orphan crop’s 

widely prevalent extant wild progenitors and farmed semi-domesticates indicates that the latter’s 

development was based on loss-of-function mutations of fundamental domestication genes, a 

knockout approach to domestication could be successfully applied to the wide extant wild 

germplasm base of (putative) new crops and could, if desired, be first further practically tested on 

orphan crops.  

 

Further practical testing of the above approach would in addition reveal if there is merit in the 

‘redomestication’ of major crops from their wild relatives and progenitors as a strategy for efficiently 

accessing wild gene pools for traits lost in the development of advanced cultivars but now 

considered beneficial for addressing agriculture’s sustainability challenges (Langridge & Waugh, 

2019). Recent research using CRISPR/Cas9 gene editing of target domestication-related genes has 

shown promise for redomestications, with domesticated phenotypes that retain important wild 

attributes achievable starting from crop wild progenitors in the case of tomato (Li et al., 2018b; 

Zsögön et al., 2018). It is known that wild relatives, progenitors and landraces of a number of major 

crops contain more variation in traits related to resource use efficiency and a plant’s ability to 

interact positively with other crops and non-crop biotic components in complex production systems 

than do narrowly-diverse advanced cultivars developed for monoculture (Kapulnik & Kushnir, 1991; 

Mutch & Young, 2004; Martín-Robles et al., 2018). Rewilding major crops for these traits (Palmgren 

et al. 2015), sampling variation at relevant gene sequences whose identification is supported by new 

and orphan crop analysis (Jacob et al., 2018), could then be an effective approach for sustainably 

intensifying farming, especially when crop interactions are specifically considered in breeding (Litrico 

& Violle, 2015). At the same time, ensuring that these once-cryptic sustainability features are 

maintained in new and orphan crops as their domestication either begins or intensifies is clearly 

important for ensuring more holistic farming system improvement outcomes (Dawson et al., 2018a).  
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Figure legends 

 

Figure 1. Schematic of the distribution of genetic diversity for new, orphan and major crops, with 

related improvement method options. The distribution of genetic resources (triangles and rectangle) 

varies by the category of plant, with implications for the application of different genetic 

improvement methods. For example, whereas major crops are well represented in gene banks 

globally, new crops are not; but in their case significant genetic variation is often still extant in the 

wild, though sometimes this variation is threatened (Dawson et al., 2018b). Orphan crops occupy an 

intermediate position in the distribution of genetic resources across location categories and in their 

position on the domestication continuum. This positioning provides unique opportunities for orphan 

crops in investigating the extrapolation domains of a range of crop genetic improvement 

approaches, for de novo domestications and major crop ‘rewildings’ (rewilding sensu Palmgren et al., 

2015: the reestablishment of beneficial wild type properties in crops).  

 

Figure 2. The diversity of farming systems in which winner and loser crops in the global food system 

are produced, based on data for 20 crops. The relationship between the diversity (summarised as 

intercrop or retained natural diversity; y-axis) of typical production systems and the relative change 

in food importance over the last half century (x-axis) for crops is shown. Crops were assigned 

numeric scores for production system diversity (ranging between 0 and 2, where 0 = lowest 

diversity, typically monoculture production) and change in food importance (positive scores = more 

important, negative scores = less important) by Dawson et al. (2018b), where further information on 

method can be found. Briefly, in the case of food importance, scores were based on the longitudinal 

trend analysis of Khoury et al. (2014) of FAOSTAT annual global food supply balance sheets, with 

crops showing a wide range of changes in relative food importance over the last half century being 

chosen as representative samples. Point size represents current global production area, based on a 

2009-2013 mean (for reference purposes, the actual value for wheat, the crop with the largest 

production area, is 220 million ha). A linear regression indicates a trend toward lower diversity 

systems for increasingly important crops. 

 

Figure 3. The relationship between production contributors (yield and total area) and changes in 

global output for 35 crops for the period 1961 to 2013. Our analysis is described in Supporting 

Information Notes S1. Briefly, values on the y-axis are the slope coefficients of linear regressions of 
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yield (production per unit area) and total production area contributions to crop output over the 

annual time series 1961 to 2013 for each of the 35 crops. Values of > and < 0 on the y-axis indicate 

relatively greater contributions from yield than total area and vice versa to global output over the 

time series, respectively. Values on the x-axis are changes in total global output over the 1961 to 

2013 period. Point size represents current annual global gross production value, based on a 2009-

2013 mean (for reference purposes, the actual value for paddy rice, the crop with the largest value, 

is 191 billion USD [in constant 2004-2006 USD]). As expected, a linear regression indicates an overall 

negative relationship between increases in output and the proportional contribution of yield to 

output for our crop panel, showing that in general crop yields were unable to keep apace with 

output increases over the last half century, in particular when output increases were very large. A 

group of nine crops where yield contributions to changes in output appear markedly low (well below 

the trend line) are encircled (dashed red line). With the exception of apple, these crops are 

characterised by relatively low production values (< USD 10 billion, compared to the mean for the 

total crop panel of USD 25 billion). Eight of the encircled crops are also perennial. In addition, six are 

(generally) propagated vegetatively under cultivation (cloves, coconut and sunflower being the seed-

propagated exceptions). In a global context of limited land availability and increasing sustainability 

needs, moving such below-trend crops closer to the trend line may be an important measure for 

diversifying crop production. 

 

Figure 4. Results of a survey of new and orphan crop production constraints, based on responses 

given by 53 African plant breeders on 30 specific plants of nutritional importance in Sub-Saharan 

Africa. The survey is described in Supporting Information Notes S2. (a) Priority production 

constraints, classified as genetic/management or input constraints. Crop pest or disease attack 

followed by storage problems were the most mentioned high priority genetic and/or management 

constraints and lack of access to suitable planting material followed by lack of crop-specific 

knowledge the most mentioned priority input constraints. (b) Key traits for genetic improvement of 

new and orphan crops. Pest and disease tolerance or resistance followed by yield (per se, i.e., 

independent of other production factors affecting yield, such as pest and disease attack) were the 

traits most mentioned as priorities for improvement (the apparent discrepancy between pie charts 

[a] and [b], where ‘yield’ as a unique feature is identified less often in the former case, appears to 

reflect yield in pie chart [a] being subsumed into [improved] ‘planting material’). Improvement in 

harvestability was the fifth most mentioned category. (c) Key agronomic management interventions 

for new and orphan crop production. Improvements in planting and/or establishment methods 
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followed by soil fertilisation measures were the most mentioned priority interventions. Seasonal 

timing of field activities (such as planting, weeding and harvesting) was the fourth most mentioned 

category for intervention, with the fifth being interventions to diversify production systems. (d) 

Variation in priorities by plant primary food product for specific constraints and interventions 

identified by breeders (letters in parentheses as identified in pie charts [a] to [c]). Values are shown 

as proportions of all responses, by food product category (F = fruit, L = leaf, R = root, S = seed; for 

further information on these findings, see Supporting Information Notes S2). (e) Breeders’ views of 

the potential for successful intervention in genetic improvement and in adopting new management 

practices. Here, breeders were asked to rate the potential for each of the key traits for genetic 

improvement or priority management interventions they had identified in (b) and (c), respectively, 

which were given equal weight as categories in analysis. 

 

Figure 5. Intercrop breeding for finger millet and groundnut improvement. A proposed design with 

three example cycling/selection methods currently being explored via stochastic modelling is given: 

Base = non-genomic selection breeding approach with recurrent selection of parents based on their 

phenotypes at general intercropping ability (GIA) 1 and GIA 2 stages; GSPYT = genomic selection 

applied at the monoculture preliminary yield trial (PYT) stage to select new parents; and GSDH = 

genomic selection applied at the doubled haploid (DH, homozygous plant) stage to select new 

parents. Both of the shown example genomic selection scenarios currently being tested include 

advancement of individuals based on their genomic estimated breeding values (GEBV) in PYT and 

GIA 1 stages; in the GSDH scenario, this is additionally done in the DH stage. At the GIA 2 stage, only 

the individuals of the respective species with the best overall combining ability are advanced to 

specific intercropping ability (SIA) stage 1. Probe = an outstanding genotype of the alternate species 

used in combined test plots to evaluate intercropping ability. 

 

Figure 6. Nearest exemplar crops, based on biologies and taxonomies, for 30 new and orphan crops 

in need of breeding method models. Crops chosen as exemplars are shown on the left of the figure 

and model-requiring new and orphan crops on the right. Connecting lines between crop pairs signify 

the minimum (Gower) distances between each model-requiring new or orphan crop and exemplar 

crops (analysis described in Supporting Information Notes S3; raw data and detailed results provided 

in Supporting Information Table S1). If analysis revealed more than one exemplar crop equally close 

to a model-requiring new or orphan crop, then multiple pairings are shown. To ease visualisation, 
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the 30 exemplar-requiring new and orphan crops we chose are divided into three groups of ten 

crops, with different coloured connector lines indicating minimum distances between crop pairs for 

each group. Solid connector lines represent an initial 1:1 biology:taxonomy weighting in the distance 

analysis. If there were differences in crop pairings when 2:1 or 1:2 biology:taxonomy weightings 

were subsequently applied, these are indicated by dashed connectors. Thirty exemplar crops, five of 

which were new or orphan crops and 25 of which were other crops, were chosen as the panel of 

exemplars because of the availability of production data for these crops in FAOSTAT. These 

exemplars are drawn from the crops (or crop groups) chosen for production trend analysis in Figure 

3. Additional exemplars not specifically named in Figure 3 represent cases in which data were 

grouped for crops in the earlier figure (pooled reporting), but where component crops could be 

treated separately in current crop-crop comparisons. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table 1. Illustrative genes for important new- and orphan crop-specific trait categories that may be 
targets for crop development 

  

Trait category Examples of relevant genes/pathways

  

  

Production integration  

Plant architecture Major genes determining plant height are some of the best studied in 
the crop literature. In barley, for example, mutations in the SEMI-
DWARF1 (sdw1) gene encoding the enzyme gibberellin 20-oxidase 3, 
which is involved in gibberellin biosynthesis, reduce plant stature (Jia 
et al., 2009). Mutations in the orthologous gene in rice, SD1, have 
been crucial in modern semi-dwarf rice variety development, one of 
the most important crop breeding interventions associated with the 
Green Revolution (Asano et al., 2007). 

 

Several genes that regulate plant branching architecture have been 
identified, including TEOSINTE BRANCHED1 (TB1), which belongs to 
the TCP family of transcriptional regulators, in maize (Zea mays) 
(Studer et al., 2017). Orthologues include Pgtb1 in pearl millet 
(Pennisetum glaucum) (Remigereau et al., 2011). The expression of 
TB1 in maize is higher than in its progenitor (teosinte), conferring 
reduced branching (Doebley et al., 1997). 

 

Genes determining root architecture in rice include DEEPER ROOTING 
1 (DRO1) and PHOSPHORUS-STARVATION TOLERANCE 1 (PSTOL1) (Mai 
et al., 2014). DRO1, a member of the IGT gene family, effects the root 
gravitropic response, via a modulation of epidermal cell elongation. It 
increases the angle between roots and the horizontal, inducing deeper 
rooting. The introduction of DRO1 into a shallow-rooting rice cultivar 
enabled the resulting line to avoid drought (Uga et al., 2013). 
Orthologues appear to control root development in a range of other 
plants (Guseman et al., 2017). The PSTOL1 gene, which encodes a 
receptor-like cytoplasmic kinase, is absent from modern rice varieties. 
Inserted into modern lines, it enhances early root growth, conferring 
greater root length and root surface area, and contributing to 
increased phosphorous uptake (Gamuyao et al., 2012) 
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Seasonal phenology Gene networks controlling flowering are well researched, especially in 
cereals. In barley, for example, variation at the PHOTOPERIOD-H1 
(HvPPD-H1) gene, which encodes a pseudo-response regulator, and at 
the earliness per se gene CENTRORADIALIS (HvCEN), which encodes a 
phosphatidylethanolamine-binding protein, controls the days to 
heading trait (Russell et al., 2016). Causal variation at both these 
genes has been explored (Turner et al., 2005 and Comadran et al., 
2012, respectively) and the magnitude of the effect of different 
haplotypes has been determined across multiple environments, 
allowing genotype-environment interactions to be characterised 
(Bustos-Korts et al., 2019) 

 

Light competition PHY genes encoding phytochrome photoreceptors and involved in 
plant growth regulator biosynthesis are involved in response to plant 
competition that changes the red to far red light ratio (Ballaré & Pierik, 
2017). In maize, PHYB1 and PHYB2 genes encode phytochromes of the 
PHYB family that contribute differently to the shade avoidance 
response (Sheehan et al., 2007) 

 

Product processability  

Anti-nutritional 
compounds 

Biosynthetic and degradation pathways are known in model plants 
and have been studied in some orphan crops (especially legumes). 
Changes in single genes are able to influence both absolute level and 
organ allocation within the plant (Nour-Eldin & Halkier, 2013). 
Targeting the genes of specialised transport proteins essential for the 
transport of secondary metabolites, such as orthologues of 
ARABIDOPSIS THALIANA GLUCOSINOLATE TRANSPORTER-1 (GTR1) and 
GTR2 that are essential for the transport of glucosinolate defence 
compounds, could eliminate anti-nutrients from edible plant parts 
(Nour-Eldin et al., 2012).  

 

In common bean, an ethyl methanesulphonate mutant with 
significantly lowered phytic acid levels in seeds is affected in an MRP 
type ABC transporter gene, Pvmrp1, that is required for phytic acid 
accumulation and is orthologous to arabidopsis (Arabidopsis thaliana) 
AtMRP5⁄AtABCC5 and maize ZmMRP4 (Panzeri et al., 2011).  

 

In grass pea (Lathyrus sativus), the biosynthetic pathway of the 
neurotoxin β-N-ozalyl-L-α, β-diaminopropanoic acid (ODAP), which is a 
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structural analogue of endogenous glutamate neurotransmitters, is 
not fully understood. But candidate genes for targeting, including a 
gene similar to that coding for an oxalyl-CoA synthetase in arabidopsis 
named ACYL-ACTIVATING ENZYME3 (AtAAE3) that could catalyse the 
penultimate reaction step in the biosynthesis of ODAP (Foster et al., 
2012), are currently under evaluation (Emmrich, 2017) 

 

The “cooking time 
trait” 

Genome-wide association scans have identified SNPs associated with 
cooking time on a number of common bean chromosomes (Pv02, 
Pv03, and Pv06). Proximate sequences of interest on Pv06 included 
two similar to arabidopsis Cation/H(+) Antiporter 3 (AtCHX3) and 
AtCHX4 that transport calcium, a mineral known to influence cooking 
time for dry beans (Cichy et al., 2015) 

 

Processability traits for 
food formulation 

Variation in the amylose to amylopectin ratio in cereal starches that 
affects consumer preference-, digestion- and processing-related traits 
has been identified with mutations at the rice WAXY gene GRANULE 
BOUND STARCH SYNTHASE I (OsGBSS1) and at orthologous sequences 
in a range of grains (Meyer & Purugganan, 2013). Mutations at WAXY 
that affect transcript processing and reduce GBSS activity confer the 
sticky (waxy) rice phenotype (low amylose to amylopectin ratio) 
(Wang et al., 1995). 

 

Ease of hull removal is an important physical property of grain that can 
influence its processability (e.g., ability to mill). In barley, the free-
threshing (naked) phenotype is controlled by the Nud gene on 
chromosome 7H that encodes an ethylene response factor (ERF) 
family transcription factor involved in lipid biosynthesis. Deletion or 
low expression of the Nud gene results in the naked phenotype 
(Taketa et al., 2008) 

 

Labour costs 
production 

 

Seed/fruit retention The loss of seed and fruit dispersal mechanisms, which greatly 
facilitates harvesting efficiency, are key domestication syndrome traits 
(Meyer & Purugganan, 2013). Orthology is observed for some genes 
across crops, such as for Shattering1 (Sh1), which encodes a YABBY 
transcription factor that provides shattering resistance in maize, 
sorghum (Sorghum bicolor) and rice. In domesticated sorghum, for 
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example, a range of different types of mutations in SbSh1 have led to 
reduced gene function and a reduction in shattering (Lin et al., 2012). 
A wide range of other genes influencing loss of dispersal ability have 
been identified in various seed and fleshy-fruited crops, and the 
effects and identities of many other candidate sequences are under 
consideration (Li & Olsen, 2016) 

 

Fruit size The genetic control of fruit size has been intensively researched in 
tomato, where the FRUITWEIGHT2.2 (FW2.2) gene, which codes for a 
negative regulator of cell proliferation that may function as a metal 
cation transporter, has an important function, accounting for up to 
30% of the difference in fruit weight between domesticated tomato 
and its wild relatives (Frary et al., 2000). Variation at orthologues of 
tomato FW2.2 also effect fruit size in a range of other crops (Azzi et 
al., 2015). Other tomato fruit-growth-related genes have been 
identified, including FW3.2 (SlKLUH) that encodes for a cytochrome 
P450 enzyme which may also play a role in regulating fruit mass in 
other crops (Chakrabarti et al., 2013) 

 

Length of juvenile stage 
(unit time return to 
labour) 

For perennial crops especially, the length of the juvenile phase of the 
plant is an important factor in determining labour returns. In various 
perennials, this has been shown to be controlled by orthologues of the 
arabidopsis TERMINAL FLOWER 1 (AfTFL1) gene that encodes a 
phosphatidylethanolamine-binding protein which acts as a floral 
repressor (Bergonzi & Albani, 2011). Transgenic apple (Malus 
domestica) expressing MdTFL1 antisense RNA, with reduced MdTFL1 
function, was shown to exhibit accelerated flowering (Kotoda et al., 
2006). The use of an Apple latent spherical virus vector to 
simultaneously promote the expression of the arabidopsis 
FLOWERING LOCUS T gene and silence MdTFL1, through embryo 
inoculation immediately after germination, resulted in early flowering 
of the resultant apple seedlings, with the cross-pollination of these 
early-flowering plants producing fruits with seeds (Yamagishi et al., 
2014). 
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