117 research outputs found

    Prothymosin a and a prothymosin α-derived peptide enhance TH1-type immune responses against defined HER-2/neu epitopes

    Get PDF
    Background: Active cancer immunotherapies are beginning to yield clinical benefit, especially those using peptide-pulsed dendritic cells (DCs). Different adjuvants, including Toll-like receptor (TLR) agonists, commonly co-administered to cancer patients as part of a DC-based vaccine, are being widely tested in the clinical setting. However, endogenous DCs in tumor-bearing individuals are often dysfunctional, suggesting that ex vivo educated DCs might be superior inducers of anti-tumor immune responses. We have previously shown that prothymosin alpha (proTα) and its immunoreactive decapeptide proTα(100–109) induce the maturation of human DCs in vitro. The aim of this study was to investigate whether proTα- or proTα(100–109)-matured DCs are functionally competent and to provide preliminary evidence for the mode of action of these agents. Results: Monocyte-derived DCs matured in vitro with proTα or proTα(100–109) express co-stimulatory molecules and secrete pro-inflammatory cytokines. ProTα- and proTα(100–109)-matured DCs pulsed with HER-2/neu peptides induce TH1-type immune responses, prime autologous naïve CD8-positive (+) T cells to lyse targets expressing the HER-2/neu epitopes and to express a polyfunctional profile, and stimulate CD4+ T cell proliferation in an HER-2/neu peptide-dependent manner. DC maturation induced by proTα and proTα(100–109) is likely mediated via TLR-4, as 25 shown by assessing TLR-4 surface expression and the levels of the intracellular adaptor molecules TIRAP, MyD88 and TRIF. Conclusions: Our results suggest that proTα and proTα(100–109) induce both the maturation and the T cell stimulatory capacity of DCs. Although further studies are needed, evidence for a possible proTα and proTα(100–109) interaction with TLR-4 is provided. The initial hypothesis that proTα and the proTα-derived immunoactive decapeptide act as “alarmins”, provides a rationale for their eventual use as adjuvants in DC-based anti-cancer immunotherapy

    Design of protease-resistant myelin basic protein-derived peptides by cleavage site directed amino acid substitutions

    Get PDF
    Multiple Sclerosis (MS) is considered to be a T cell-mediated autoimmune disease. An attractive strategy to prevent activation of autoaggressive T cells in MS, is the use of altered peptide ligands (APL), which bind to major histocompatibility complex class II (MHC II) molecules. To be of clinical use, APL must be capable of resisting hostile environments including the proteolytic machinery of antigen presenting cells (APC). The current design of APL relies on cost- and labour-intensive strategies. To overcome these major drawbacks, we used a deductive approach which involved modifying proteolytic cleavage sites in APL. Cleavage site-directed amino acid substitution of the autoantigen myelin basic protein (MBP) resulted in lysosomal protease-resistant, high-affinity binding peptides. In addition, these peptides mitigated T cell activation in a similar fashion as conventional APL. The strategy outlined allows the development of protease-resistant APL and provides a universal design strategy to improve peptide-based immunotherapeutics

    Long-term safety in patients with recurrent ovarian cancer treated with niraparib versus placebo: Results from the phase III ENGOT-OV16/NOVA trial

    Get PDF
    OBJECTIVE: Niraparib is a poly(ADP-ribose) polymerase (PARP) inhibitor approved for use in heavily pretreated patients and as maintenance treatment in patients with newly-diagnosed or recurrent ovarian cancer following a response to platinum-based chemotherapy. We present long-term safety data for niraparib from the ENGOT-OV16/NOVA trial. METHODS: This multicenter, double-blind, randomized, controlled phase III trial evaluated the efficacy and safety of niraparib for the treatment of recurrent ovarian cancer. Patients were randomly assigned 2:1 to receive either once-daily niraparib 300 mg or placebo. Two independent cohorts were enrolled based on germline BRCA mutation status. The primary endpoint was progression-free survival, reported previously. Long-term safety data were from the most recent data cutoff (September 2017). RESULTS: Overall, 367 patients received niraparib 300 mg once daily. Dose reductions due to TEAEs were highest in month 1 (34%) and declined every month thereafter. Incidence of any-grade and grade ≥ 3 hematologic and symptomatic TEAEs was also highest in month 1 and subsequently declined. Incidence of grade ≥ 3 thrombocytopenia decreased from 28% (month 1) to 9% and 5% (months 2 and 3, respectively), with protocol-directed dose interruptions and/or reductions. Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) were reported in 2 and 6 niraparib-treated patients, respectively, and in 1 placebo patient each. Treatment discontinuations due to TEAEs were <5% in each month and time interval measured. CONCLUSION: These data demonstrate the importance of appropriate dose reduction according to toxicity criteria and support the safe long-term use of niraparib for maintenance treatment in patients with recurrent ovarian cancer. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01847274

    Regulation of Cathepsin G Reduces the Activation of Proinsulin-Reactive T Cells from Type 1 Diabetes Patients

    Get PDF
    Autoantigenic peptides resulting from self-proteins such as proinsulin are important players in the development of type 1 diabetes mellitus (T1D). Self-proteins can be processed by cathepsins (Cats) within endocytic compartments and loaded to major histocompatibility complex (MHC) class II molecules for CD4+ T cell inspection. However, the processing and presentation of proinsulin by antigen-presenting cells (APC) in humans is only partially understood. Here we demonstrate that the processing of proinsulin by B cell or myeloid dendritic cell (mDC1)-derived lysosomal cathepsins resulted in several proinsulin-derived intermediates. These intermediates were similar to those obtained using purified CatG and, to a lesser extent, CatD, S, and V in vitro. Some of these intermediates polarized T cell activation in peripheral blood mononuclear cells (PBMC) from T1D patients indicative for naturally processed T cell epitopes. Furthermore, CatG activity was found to be elevated in PBMC from T1D patients and abrogation of CatG activity resulted in functional inhibition of proinsulin-reactive T cells. Our data suggested the notion that CatG plays a critical role in proinsulin processing and is important in the activation process of diabetogenic T cells

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    CRTAC1: Ein von Chondrozyten sezerniertes extrazelluläres Matrixmolekül unterstützt die Zelladhäsion

    Get PDF
    Naval Postgraduate School Acquisition Research Progra

    In vitro immunodetection of prothymosin alpha in normal and pathological conditions

    No full text
    Prothymosin alpha (ProTα) is a highly acidic polypeptide, ubiquitously expressed in almost all mammalian cells and tissues and consisting of 109 amino acids in humans. ProTα is known to act both, intracellularly, as an anti-apoptotic and proliferation mediator, and extracellularly, as a biologic response modifier mediating immune responses similar to molecules termed as “alarmins”. Antibodies and immunochemical techniques for ProTα have played a leading role in the investigation of the biological role of ProTα, several aspects of which still remain unknown and contributed to unraveling the diagnostic and therapeutic potential of the polypeptide. This review deals with the so far reported antibodies along with the related immunodetection methodology for ProTα (immunoassays as well as immunohistochemical, immunocytological, immunoblotting, and immunoprecipitation techniques) and its application to biological samples of interest (tissue extracts and sections, cells, cell lysates and cell culture supernatants, body fluids), in health and disease states. In this context, literature information is critically discussed, and some concluding remarks are presented. © 2020 Bentham Science Publishers
    corecore