18 research outputs found

    Parasitic Plants Striga and Phelipanche Dependent upon Exogenous Strigolactones for Germination Have Retained Genes for Strigolactone Biosynthesis

    Get PDF
    Abstract Strigolactones are plant hormones with multiple functions, including regulating various aspects of plant architecture such as shoot branching, facilitating the colonization of plant roots by arbuscular mycorrhizal fungi, and acting as seed germination stimulants for certain parasitic plants of the family Orobanchaceae. The obligate parasitic species Phelipanche aegyptiaca and Striga hermonthica require strigolactones for germination, while the facultative parasite Triphysaria versicolor does not. It has been hypothesized that P. aegyptiaca and S. hermonthica would have undergone evolutionary loss of strigolactone biosynthesis as a part of their mechanism to enable specific detection of exogenous strigolactones. We analyzed the transcriptomes of P. aegyptiaca, S. hermonthica and T. versicolor and identified genes known to act in strigolactone synthesis (D27, CCD7, CCD8, and MAX1), perception (MAX2 and D14) and transport (PDR12). These genes were then analyzed to assess likelihood of function. Transcripts of all strigolactone-related genes were found M. Das et al. 1152 in P. aegyptiaca and S. hermonthica, and evidence points to their encoding functional proteins. Gene open reading frames were consistent with homologs from Arabidopsis and other strigolactone-producing plants, and all genes were expressed in parasite tissues. In general, the genes related to strigolactone synthesis and perception appeared to be evolving under codon-based selective constraints in strigolactone-dependent species. Bioassays of S. hermonthica root extracts indicated the presence of strigolactone class stimulants on germination of P. aegyptiaca seeds. Taken together, these results indicate that Phelipanche aegyptiaca and S. hermonthica have retained functional genes involved in strigolactone biosynthesis, suggesting that the parasites use both endogenous and exogenous strigolactones and have mechanisms to differentiate the two

    Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species

    Get PDF
    Abstract Background Parasitic plants, represented by several thousand species of angiosperms, use modified structures known as haustoria to tap into photosynthetic host plants and extract nutrients and water. As a result of their direct plant-plant connections with their host plant, parasitic plants have special opportunities for horizontal gene transfer, the nonsexual transmission of genetic material across species boundaries. There is increasing evidence that parasitic plants have served as recipients and donors of horizontal gene transfer (HGT), but the long-term impacts of eukaryotic HGT in parasitic plants are largely unknown. Results Here we show that a gene encoding albumin 1 KNOTTIN-like protein, closely related to the albumin 1 genes only known from papilionoid legumes, where they serve dual roles as food storage and insect toxin, was found in Phelipanche aegyptiaca and related parasitic species of family Orobanchaceae, and was likely acquired by a Phelipanche ancestor via HGT from a legume host based on phylogenetic analyses. The KNOTTINs are well known for their unique “disulfide through disulfide knot” structure and have been extensively studied in various contexts, including drug design. Genomic sequences from nine related parasite species were obtained, and 3D protein structure simulation tests and evolutionary constraint analyses were performed. The parasite gene we identified here retains the intron structure, six highly conserved cysteine residues necessary to form a KNOTTIN protein, and displays levels of purifying selection like those seen in legumes. The albumin 1 xenogene has evolved through >150 speciation events over ca. 16 million years, forming a small family of differentially expressed genes that may confer novel functions in the parasites. Moreover, further data show that a distantly related parasitic plant, Cuscuta, obtained two copies of albumin 1 KNOTTIN-like genes from legumes through a separate HGT event, suggesting that legume KNOTTIN structures have been repeatedly co-opted by parasitic plants. Conclusions The HGT-derived albumins in Phelipanche represent a novel example of how plants can acquire genes from other plants via HGT that then go on to duplicate, evolve, and retain the specialized features required to perform a unique host-derived function.This work was supported by NSF Plant Genome award DBI-0701748 (“The Parasitic Plant Genome Project”) to J.H.W., C.W.D., M.P.T., and J.Y. Graduate fellowship support for Y. Zhang was provided by the Intercollege Graduate Program in Genetics and the Department of Biology (Penn State University), and M. Fernández-Aparicio was supported by an International Outgoing European Marie Curie postdoctoral fellowship (PIOF-GA-2009-252538). Additional support was provided from the U.S. Department of Agriculture (Hatch project no. 135798) and NSF IOS-0843372 to J.H.W. and by NSF award DEB-0542958 to M.F.W.Peer Reviewe
    corecore