6 research outputs found

    Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    Get PDF
    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag−/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.National Institutes of Health (U.S.) (NIH grant R01-CA075576)National Institutes of Health (U.S.) (NIH grant R01-CA055042)National Institutes of Health (U.S.) (NIH grant R01-CA149261)National Institutes of Health (U.S.) (NIH grant P30-ES00002)National Institutes of Health (U.S.) (NIH grant P30-ES02109)National Center for Research Resources (U.S.) (grant number M01RR-01066)National Center for Research Resources (U.S.) (grant number UL1 RR025758, Harvard Clinical and Translational Science Center

    Balancing repair and tolerance of DNA damage caused by alkylating agents

    Get PDF
    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity

    Differential effects of reactive nitrogen species on DNA base excision repair initiated by the alkyladenine DNA glycosylase

    No full text
    Chronic generation of reactive nitrogen species (RNS) can cause DNA damage and may also directly modify DNA repair proteins. RNS-modified DNA is repaired predominantly by the base excision repair (BER) pathway, which includes the alkyladenine DNA glycosylase (AAG). The AAG active site contains several tyrosines and cysteines that are potential sites for modification by RNS. In vitro, we demonstrate that RNS differentially alter AAG activity depending on the site and type of modification. Nitration of tyrosine 162 impaired 1,N6-ethenoadenine (εA)-excision activity, whereas nitrosation of cysteine 167 increased εA excision. To understand the effects of RNS on BER in vivo, we examined intestinal adenomas for levels of inducible nitric oxide synthase (iNOS) and AAG. A striking correlation between AAG and iNOS expression was observed (r = 0.76, P = 0.00002). Interestingly, there was no correlation between changes in AAG levels and enzymatic activity. We found AAG to be nitrated in human adenomas, suggesting that this RNS modification is relevant in the human disease. Expression of key downstream components of BER, apurinic/apyrimidinic endonuclease 1 (APE1) and DNA polymerase β (POLβ), was also examined. POLβ protein was increased in nearly all adenomas compared with adjacent non-tumor tissues, whereas APE1 expression was only increased in approximately half of the adenomas and also was relocalized to the cytoplasm in adenomas. Collectively, the results suggest that BER is dysregulated in colon adenomas. RNS-induced posttranslational modification of AAG is one mechanism of BER dysregulation, and the type of modification may define the role of AAG during carcinogenesis

    Balancing repair and tolerance of DNA damage caused by alkylating agents

    No full text
    corecore