5,261 research outputs found
The process gg -> WW as a background to the Higgs signal at the LHC
The production of W pairs from the one-loop gluon fusion process is studied.
Formulas are presented for the helicity amplitudes keeping the top mass finite,
but all other quark masses zero. The correlations among the leptons coming from
the W bosons are kept. The contribution of this background to the Higgs boson
search in the WW decay mode at the LHC is estimated by applying the cuts
foreseen in experimental searches using the PYTHIA Monte Carlo program.
Kinematic distributions for the final state leptons are compared to those of
the Higgs boson signal and of the q qbar -> WW background. After applying final
cuts, the gg background is found to be large, at the level of 35% of the q qbar
background.The characteristics of the gg background are very similar to those
of the signal. Therefore, an experimental normalization of this background
component appears to be very difficult and the uncertainty must largely be
determined by theory. As a result, the significance of a Higgs signal in the gg
-> H -> WW mode at the LHC is reduced.Comment: 24 pages, 4 figure
Prospects for the Search for a Standard Model Higgs Boson in ATLAS using Vector Boson Fusion
The potential for the discovery of a Standard Model Higgs boson in the mass
range m_H < 2 m_Z in the vector boson fusion mode has been studied for the
ATLAS experiment at the LHC. The characteristic signatures of additional jets
in the forward regions of the detector and of low jet activity in the central
region allow for an efficient background rejection. Analyses for the H -> WW
and H -> tau tau decay modes have been performed using a realistic simulation
of the expected detector performance. The results obtained demonstrate the
large discovery potential in the H -> WW decay channel and the sensitivity to
Higgs boson decays into tau-pairs in the low-mass region around 120 GeV.Comment: 20 pages, 13 ps figures, uses EPJ style fil
Nonequilibrium functional RG with frequency dependent vertex function: A study of the single impurity Anderson model
We investigate nonequilibrium properties of the single impurity Anderson
model by means of the functional renormalization group (fRG) within Keldysh
formalism. We present how the level broadening Gamma/2 can be used as flow
parameter for the fRG. This choice preserves important aspects of the Fermi
liquid behaviour that the model exhibits in case of particle-hole symmetry. An
approximation scheme for the Keldysh fRG is developed which accounts for the
frequency dependence of the two-particle vertex in a way similar but not
equivalent to a recently published approximation to the equilibrium Matsubara
fRG. Our method turns out to be a flexible tool for the study of weak to
intermediate on-site interactions U <= 3 Gamma. In equilibrium we find
excellent agreement with NRG results for the linear conductance at finite gate
voltage, magnetic field, and temperature. In nonequilibrium, our results for
the current agree well with TD-DMRG. For the nonlinear conductance as function
of the bias voltage, we propose reliable results at finite magnetic field and
finite temperature. Furthermore, we demonstrate the exponentially small scale
of the Kondo temperature to appear in the second order derivative of the
self-energy. We show that the approximation is, however, not able to reproduce
the scaling of the effective mass at large interactions.Comment: [v2] - minor changes throughout the text; added new Fig. 3; corrected
pert.-theory data in Figs. 10, 11; published versio
Charge transport through single molecules, quantum dots, and quantum wires
We review recent progresses in the theoretical description of correlation and
quantum fluctuation phenomena in charge transport through single molecules,
quantum dots, and quantum wires. A variety of physical phenomena is addressed,
relating to co-tunneling, pair-tunneling, adiabatic quantum pumping, charge and
spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical
many-body methods to treat correlation effects, quantum fluctuations,
nonequilibrium physics, and the time evolution into the stationary state of
complex nanoelectronic systems.Comment: 48 pages, 14 figures, Topical Review for Nanotechnolog
Gluon-induced W-boson pair production at the LHC
Pair production of W bosons constitutes an important background to Higgs
boson and new physics searches at the Large Hadron Collider LHC. We have
calculated the loop-induced gluon-fusion process gg -> W*W* -> leptons,
including intermediate light and heavy quarks and allowing for arbitrary
invariant masses of the W bosons. While formally of next-to-next-to-leading
order, the gg -> W*W* -> leptons process is enhanced by the large gluon flux at
the LHC and by experimental Higgs search cuts, and increases the
next-to-leading order WW background estimate for Higgs searches by about 30%.
We have extended our previous calculation to include the contribution from the
intermediate top-bottom massive quark loop and the Higgs signal process. We
provide updated results for cross sections and differential distributions and
study the interference between the different gluon scattering contributions. We
describe important analytical and numerical aspects of our calculation and
present the public GG2WW event generator.Comment: 20 pages, 4 figure
Studying How Health Literacy Influences Attention during Online Information Seeking
Health literacy affects how people understand health information and, therefore, should be considered by search engines in health searches. In this work, we analyze how the level of health literacy is related to the eye movements of users searching the web for health information. We performed a user study with 30 participants that were asked to search online in the context of three work task situations defined by the authors. Their eye interactions with the Search Results Page and the Result Pages were logged using an eye-tracker and later analyzed. When searching online for health information, people with adequate health literacy spend more time and have more fixations on Search Result Pages. In this type of page, they also pay more attention to the results' hyperlink and snippet and click in more results too. In Result Pages, adequate health literacy users spend more time analyzing textual content than people with lower health literacy. We found statistical differences in terms of clicks, fixations, and time spent that could be used as a starting point for further research. That we know of, this is the first work to use an eye-tracker to explore how users with different health literacy search online for health-related information. As traditional instruments are too intrusive to be used by search engines, an automatic prediction of health literacy would be very useful for this type of system
- …