10 research outputs found

    An axially symmetric solution of metric-affine gravity

    Full text link
    We present an exact stationary {\it axially symmetric} vacuum solution of metric-affine gravity (MAG) which generalises the recently reported spherically symmetric solution. Besides the metric, it carries nonmetricity and torsion as post-Riemannian geometrical structures. The parameters of the solution are interpreted as mass and angular momentum and as dilation, shear and spin charges.Comment: 5 pages, RevTe

    Pleba\'nski-Demia\'nski-like solutions in metric-affine gravity

    Full text link
    We consider a (non--Riemannian) metric--affine gravity theory, in particular its nonmetricity--torsion sector ``isomorphic'' to the Einstein--Maxwell theory. We map certain Einstein--Maxwell electrovacuum solutions to it, namely the Pleba\'nski--Demia\'nski class of Petrov type D metrics.Comment: 12 pages of a LaTeX-fil

    Maxwell's theory on a post-Riemannian spacetime and the equivalence principle

    Get PDF
    The form of Maxwell's theory is well known in the framework of general relativity, a fact that is related to the applicability of the principle of equivalence to electromagnetic phenomena. We pose the question whether this form changes if torsion and/or nonmetricity fields are allowed for in spacetime. Starting from the conservation laws of electric charge and magnetic flux, we recognize that the Maxwell equations themselves remain the same, but the constitutive law must depend on the metric and, additionally, may depend on quantities related to torsion and/or nonmetricity. We illustrate our results by putting an electric charge on top of a spherically symmetric exact solution of the metric-affine gauge theory of gravity (comprising torsion and nonmetricity). All this is compared to the recent results of Vandyck.Comment: 9 pages, REVTeX, no figures; minor changes, version to be published in Class. Quantum Gra

    Non-Riemannian Gravity and the Einstein-Proca System

    Get PDF
    We argue that all Einstein-Maxwell or Einstein-Proca solutions to general relativity may be used to construct a large class of solutions (involving torsion and non-metricity) to theories of non-Riemannian gravitation that have been recently discussed in the literature.Comment: 9 pages Plain Tex (No Figures), Letter to Editor Classical and Quantum Gravit

    Axial-Vector Torsion and the Teleparallel Kerr Spacetime

    Get PDF
    In the context of the teleparallel equivalent of general relativity, we obtain the tetrad and the torsion fields of the stationary axisymmetric Kerr spacetime. It is shown that, in the slow rotation and weak field approximations, the axial-vector torsion plays the role of the gravitomagnetic component of the gravitational field, and is thus the responsible for the Lense-Thirring effect.Comment: 9 pages, no figures, to appear in Class. Quant. Gra

    Dark Matter Gravitational Interactions

    Full text link
    We argue that the conjectured dark mater in the Universe may be endowed with a new kind of gravitational charge that couples to a short range gravitational interaction mediated by a massive vector field. A model is constructed that assimilates this concept into ideas of current inflationary cosmology. The model is also consistent with the observed behaviour of galactic rotation curves according to Newtonian dynamics. The essential idea is that stars composed of ordinary (as opposed to dark matter) experience Newtonian forces due to the presence of an all pervading background of massive gravitationally charged cold dark matter. The novel gravitational interactions are predicted to have a significant influence on pre-inflationary cosmology. The precise details depend on the nature of a gravitational Proca interaction and the description of matter. A gravitational Proca field configuration that gives rise to attractive forces between dark matter charges of like polarity exhibits homogeneous isotropic eternal cosmologies that are free of cosmological curvature singularities thus eliminating the horizon problem associated with the standard big-bang scenario. Such solutions do however admit dense hot pre-inflationary epochs each with a characteristic scale factor that may be correlated with the dark matter density in the current era of expansion. The model is based on a theory in which a modification of Einsteinian gravity at very short distances can be expressed in terms of the gradient of the Einstein metric and the torsion of a non-Riemannian connection on the bundle of linear frames over spacetime. Indeed we demonstrate that the genesis of the model resides in a remarkable simplification that occurs when one analyses the variational equations associated with a broad class of non-Riemannian actions.Comment: 40 pages, 4 Postscript figure
    corecore