279 research outputs found

    Diluted maximum-likelihood algorithm for quantum tomography

    Full text link
    We propose a refined iterative likelihood-maximization algorithm for reconstructing a quantum state from a set of tomographic measurements. The algorithm is characterized by a very high convergence rate and features a simple adaptive procedure that ensures likelihood increase in every iteration and convergence to the maximum-likelihood state. We apply the algorithm to homodyne tomography of optical states and quantum tomography of entangled spin states of trapped ions and investigate its convergence properties.Comment: v2: Convergence proof adde

    Convex probability domain of generalized quantum measurements

    Full text link
    Generalized quantum measurements with N distinct outcomes are used for determining the density matrix, of order d, of an ensemble of quantum systems. The resulting probabilities are represented by a point in an N-dimensional space. It is shown that this point lies in a convex domain having at most d^2-1 dimensions.Comment: 7 pages LaTeX, one PostScript figure on separate pag

    Reconstruction of the spin state

    Get PDF
    System of 1/2 spin particles is observed repeatedly using Stern-Gerlach apparatuses with rotated orientations. Synthesis of such non-commuting observables is analyzed using maximum likelihood estimation as an example of quantum state reconstruction. Repeated incompatible observations represent a new generalized measurement. This idealized scheme will serve for analysis of future experiments in neutron and quantum optics.Comment: 4 pages, 1 figur

    Lost and found: the radial quantum number of Laguerre-Gauss modes

    Get PDF
    We introduce an operator linked with the radial index in the Laguerre-Gauss modes of a two-dimensional harmonic oscillator in cylindrical coordinates. We discuss ladder operators for this variable, and confirm that they obey the commutation relations of the su(1,1) algebra. Using this fact, we examine how basic quantum optical concepts can be recast in terms of radial modes.Comment: Some minor typos fixed

    Quantum estimation via minimum Kullback entropy principle

    Full text link
    We address quantum estimation in situations where one has at disposal data from the measurement of an incomplete set of observables and some a priori information on the state itself. By expressing the a priori information in terms of a bias toward a given state the problem may be faced by minimizing the quantum relative entropy (Kullback entropy) with the constraint of reproducing the data. We exploit the resulting minimum Kullback entropy principle for the estimation of a quantum state from the measurement of a single observable, either from the sole mean value or from the complete probability distribution, and apply it as a tool for the estimation of weak Hamiltonian processes. Qubit and harmonic oscillator systems are analyzed in some details.Comment: 7 pages, slightly revised version, no figure

    Minimax mean estimator for the trine

    Full text link
    We explore the question of state estimation for a qubit restricted to the xx-zz plane of the Bloch sphere, with the trine measurement. In our earlier work [H. K. Ng and B.-G. Englert, eprint arXiv:1202.5136[quant-ph] (2012)], similarities between quantum tomography and the tomography of a classical die motivated us to apply a simple modification of the classical estimator for use in the quantum problem. This worked very well. In this article, we adapt a different aspect of the classical estimator to the quantum problem. In particular, we investigate the mean estimator, where the mean is taken with a weight function identical to that in the classical estimator but now with quantum constraints imposed. Among such mean estimators, we choose an optimal one with the smallest worst-case error-the minimax mean estimator-and compare its performance with that of other estimators. Despite the natural generalization of the classical approach, this minimax mean estimator does not work as well as one might expect from the analogous performance in the classical problem. While it outperforms the often-used maximum-likelihood estimator in having a smaller worst-case error, the advantage is not significant enough to justify the more complicated procedure required to construct it. The much simpler adapted estimator introduced in our earlier work is still more effective. Our previous work emphasized the similarities between classical and quantum state estimation; in contrast, this paper highlights how intuition gained from classical problems can sometimes fail in the quantum arena.Comment: 18 pages, 3 figure

    Characterizing Quantum Microwave Radiation and its Entanglement with Superconducting Qubits using Linear Detectors

    Full text link
    Recent progress in the development of superconducting circuits has enabled the realization of interesting sources of nonclassical radiation at microwave frequencies. Here, we discuss field quadrature detection schemes for the experimental characterization of itinerant microwave photon fields and their entanglement correlations with stationary qubits. In particular, we present joint state tomography methods of a radiation field mode and a two-level system. Including the case of finite quantum detection efficiency, we relate measured photon field statistics to generalized quasi-probability distributions and statistical moments for one-channel and two-channel detection. We also present maximum-likelihood methods to reconstruct density matrices from measured field quadrature histograms. Our theoretical investigations are supported by the presentation of experimental data, for which microwave quantum fields beyond the single-photon and Gaussian level have been prepared and reconstructed.Comment: 14 pages, 5 figure

    Electron-phonon coupling in the conventional superconductor YNi2_2B2_2C at high phonon energies studied by time-of-flight neutron spectroscopy

    Full text link
    We report an inelastic neutron scattering investigation of phonons with energies up to 159 meV in the conventional superconductor YNi2_2B2_2C. Using the SWEEP mode, a newly developed time-of-flight technique involving the continuous rotation of a single crystal specimen, allowed us to measure a four dimensional volume in (Q,E) space and, thus, determine the dispersion surface and linewidths of the A1gA_{1g} (~ 102 meV) and AuA_u (~ 159 meV) type phonon modes for the whole Brillouin zone. Despite of having linewidths of Γ=10meV\Gamma = 10 meV, A1gA_{1g} modes do not strongly contribute to the total electron-phonon coupling constant λ\lambda. However, experimental linewidths show a remarkable agreement with ab-initio calculations over the complete phonon energy range demonstrating the accuracy of such calculations in a rare comparison to a comprehensive experimental data set.Comment: accepted for publication in PR
    corecore