35 research outputs found

    Erratum to: Mechano-Transduction Signals Derived from Self-Assembling Peptide Nanofibers Containing Long Motif of Laminin Influence Neurogenesis in In-Vitro and In-Vivo (Mol Neurobiol, 10.1007/s12035-016-9836-z)

    Get PDF
    Astroglial scaring and limited neurogenesis are two problematic issues in recovery of spinal cord injury (SCI). In the meantime, it seems that mechanical manipulations of scaffold to inhibit astroglial scarring and improve neurogenesis is worthy of value. In the present investigation, the effect of nanofiber (gel) concentration as a mechanical-stimuli in neurogenesis was investigated. Cell viability, membrane damage, and neural differentiation derived from endometrial stem cells encapsulated into self-assembling peptide nanofiber containing long motif of laminin were assessed. Then, two of their concentrations that had no significant difference of neural differentiation potential were selected for motor neuron investigation in SCI model of rat. MTT assay data showed that nanofibers at the concentrations of 0.125 and 0.25 % w/v induced higher and less cell viability than others, respectively, while cell viability derived from higher concentrations of 0.25 % w/v had ascending trend. Gene expression results showed that noggin along with laminin motif over-expressed TH gene and the absence of noggin or laminin motif did not in all concentrations. Bcl2 over-expression is concomitant with the decrease of nanofiber stiffness, NF+ cells increment, and astrogenesis inhibition and dark neuron decrement in SCI model. It seems that stiffness affects on Bcl2 gene expression and may through β-Catenin/Wnt signaling pathway and BMP-4 inhibition decreases astrogenesis and improves neurogenesis. However, stiffness had a significant effect on upregulation of GFAP+ cells and motor neuron recovery in in vivo. It might be concluded that eventually there is a critical definitive point concentration that at less or higher than of it changes cell behavior and neural differentiation through different molecular pathways

    Angiotensin-converting enzyme inhibitors and cytokines in heart failure: dose and effect?∗∗Editorials published in the Journal of the American College of Cardiologyreflect the views of the authors and do not necessarily represent the views of JACCor the American College of Cardiology.

    Get PDF
    Tyrosine hydroxylase (TH), a rate-limiting step in catecholamine synthesis in which its activity influences Alzheimer disease, Parkinson disease, and IQ of schizophrenia patients, has been studied for a long time. In the meantime, the present investigation assessed the effect of noggin and type of self-assembling nanofibers in TH gene over-expression by neuron-like cells derived from human endometrial-derived stromal cells (hEnSCs). Neuroblastoma cells and hEnSCs encapsulated into nanofibers including Matrigel, (RADA)4, laminin, and BMHP-1 motif bounded to (RADA)4 and their cell viability were studied for 48 h and 18 days in basal and neurogenic media, respectively, in noggin-rich media. Then, expression of neural genes and proteins has been investigated by immunocytochemistry (ICC) and real-time PCR methods, respectively. The results indicated that neuroblastoma cell and hEnSC viability is in good agreement with the level of Bcl2 and β-tubulin III gene expression; however, -BMHP-1 and -laminin nanofibers exhibited significantly higher cell viability eventually through Wnt/β-catenin signaling pathway as compared to others, respectively. The gene expression analysis of nanofibers showed that none of them induced gamma-aminobutyric acid (GABA) gene expression while glial fibrillary acidic protein (GFAP) gene just over-expressed in cells encapsulated into Matrigel with a low level of Bcl2 gene expression. However, the TH gene just had been over-expressed in cells encapsulated into -laminin nanofiber and 2D cell culture. In the absence of noggin with -laminin nanofibers, TH gene expression was suppressed. It might be concluded that although noggin through anti-BMP pathways resulted in GFAP decrement and TH gene increment, the type of scaffold that defined the final fate of cells and -laminin accompaniment might be useful for the recovery of Alzheimer and Parkinson disease patients. © 2016 Springer Science+Business Media New Yor

    The impact of the particle size of curcumin nanocarriers and the ethanol on beta1-integrin overexpression in fibroblasts: A regenerative pharmaceutical approach in skin repair and anti-aging formulations

    Get PDF
    Background: Since women pay more attention to their skin�s health, pharmaceutical companies invest heavily on skin care product development. Further, the success of drug nano-carriers in passing through the skin justifies the need to conduct studies at the nano-scale. β1-integrin down regulation has been proposed as a sign of skin aging. Methods: Six drug nano-carriers (50 and 75 nm) were prepared at three ethanol concentrations (0, 3,and 5) and different temperatures. Then, the impact of Nanocarriers on fibroblasts were investigated. Results: DLS showed that increasing ethanol concentration decreased the surface tension that caused a decrease in the particle size in non-temperature formulations while increasing the temperature to 60 °C to lower Gibbs free energy increased the particle size. Ethanol addition decreased β1-integrin over-expression, whereas larger nano-carriers induced an over-expression of β1-integrin, Bcl2/Bax ratio, and an increase in live cell number. β1-integrin over-expression did not correlate with the rate of fibroblast proliferation and NFκB expression. An increase in fibroblast mortality in relation to smaller nano-carriers was not only due to the increase in Bax ratio, but was related to NFκB over-expression. Conclusion: The development of a regenerative pharmaceutical approach in skin repair was based on the effect of particle size and ethanol concentration of the drug nano-carriers on the expression of β1-integrin in fibroblasts. A curcumin nanoformulation sized 77 nm and containing of 3 ethanol was more effective in increasing β1-integrin gene over-expression, anti-apoptosis of fibroblast cells (Bcl2/Bax ratio), and in decreasing Bax and NFκB gene expression than that with a particle size of 50 nm. Such a formulation may be considered a valuable candidate in anti-aging and wound-healing formulations. Figure not available: see fulltext.. © 2019, Springer Nature Switzerland AG

    Therapeutic potential of human mesenchymal stem cells derived beta cell precursors on a nanofibrous scaffold: An approach to treat diabetes mellitus

    No full text
    Diabetes mellitus is an autoimmune and chronic disorder that is rapidly expanding worldwide due to increasing obesity. In the current study, we were able to design a reliable 3-dimensional differentiation process of human Wharton's jelly mesenchymal stem cells into pancreatic beta cell precursors (PBCPs) and detected that transplanted PBCPs could improve hyperglycemia in a diabetes-induced model in mice. Polylactic acid/chitosan nanofibrous scaffold was prepared using an electrospinning method. Quantitative real-time reverse transcription-polymerase chain reaction and immunocytochemistry analysis were carried out to assess pancreatic marker expression in the differentiated cells. PBCPs were transplanted under the kidney capsule of diabetic mice that induced streptozotocin injection 14 days before the transplantation. Moreover, an intraperitoneal glucose tolerance test (ipGTT) was carried out 2 and 4 weeks after the transplantation to measure the reaction to a sudden increase of the blood glucose level in the transplanted animals. The results indicated that the expression of SRY (sex determining region Y)-box (Sox17), forkhead box A2 (FoxA2), pancreatic and duodenal homeobox 1 (Pdx1), neurogenin 3 (Ngn3), hepatic nuclear factor 4, alpha (Hnf4α), and NK2 homeobox 2 (Nkx2.2) were increased significantly in the differentiated cells compared with that of the control group. In the current study, the diabetic disease was confirmed by measuring blood glucose and proved by conducting some other behavioral tests. After the PBCPs transplantation in a diabetic model, the ipGTT and hyperglycemia investigation during the determinant times confirmed the disease's significant improvement in the experimental models. In this study, some preclinical data suggested that the transplantation of PBCPs associated with appropriate nanofiber scaffold can be utilized for the treatment of diabetes models. In addition, studies are required to elucidate the molecular mechanism of PBCPs acting in diabetes models before being used for patients with diabetes. © 2018 Wiley Periodicals, Inc

    In vitro comparative survey of cell adhesion and proliferation of human induced pluripotent stem cells on surfaces of polymeric electrospun nanofibrous and solution-cast film scaffolds

    No full text
    Extracellular matrix (ECM) components play a critical role in regulating cell behaviors. Interactions between ECM components and cells are important in various biological processes, including cell attachment, survival, morphogenesis, spreading, proliferation, and gene expression. In this study the in vitro responses of human induced pluripotent stem cells (hiPSCs) on polycaprolactone (PCL) electrospun nanofibrous scaffold were reported in comparison with those of the cells on corresponding solution-cast film scaffold. Our results demonstrated that the nanofibrous scaffold showed better support for the attachment and proliferation of hiPSCs than their corresponding film scaffold. Consequently, we emphasize that hiPSCs can sense the physical properties and chemical composition of the materials and regulate their behaviors accordingly. © 2015 Wiley Periodicals, Inc

    Neuroprotective Effect of Transplanted Neural Precursors Embedded on PLA/CS Scaffold in an Animal Model of Multiple Sclerosis

    No full text
    Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). Cell transplantation may be an attractive therapeutic approach for MS which may promote remyelination and suppress the inflammatory process. Neural precursor cells are promising in transplantation strategies to treat an injury to the CNS, because of their ability to differentiate into neural cells. Here, we investigated the use of polylactic acid/chitosan (PLA/CS) scaffold as 3D system which increases neural cell differentiation. Nerve growth factor (NGF), basic fibroblast growth factor (bFGF), and conditioned media were employed to induce PC12 cells into neural-like cells (NLCs) on nanofibrous PLA/CS scaffold. Enhanced numbers of neural structures and staining of nestin, microtubule-associated protein (Map2), and class III β-tubulin (β3-tub) were observed with PC12-cell-seeded nanofibrous scaffolds when compared with control medium. The results revealed that PC12 cells attach, grow, and undergo differentiation on the nanofibrous PLA/CS scaffold. Additionally, our study illustrates that transplanted PC12-derived NLCs into the brain lateral ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS, significantly reduced the clinical signs of EAE. Histological examination showed attenuation of the inflammatory process in transplanted animals, which was correlated with the reduction of both axonal damage and demyelination. © 2014, Springer Science+Business Media New York

    Electrospun Nanofibers for Diabetes: Tissue Engineering and Cell-Based Therapies

    No full text
    Diabetes mellitus is an autoimmune disease which causes loss of insulin secretion producing hyperglycemia by promoting progressive destruction of pancreatic β cells. An ideal therapeutic approach to manage diabetes mellitus is pancreatic β cells replacement. The aim of this review article was to evaluate the role of nanofibrous scaffolds and stem cells in the treatment of diabetes mellitus. Various studies have pointed out that application of electrospun biomaterials has considerably attracted researchers in the field of tissue engineering. The principles of cell therapy for diabetes have been reviewed in the first part of this article, while the usability of tissue engineering as a new therapeutic approach is discussed in the second part

    The impact of the particle size of curcumin nanocarriers and the ethanol on beta1-integrin overexpression in fibroblasts: A regenerative pharmaceutical approach in skin repair and anti-aging formulations

    Get PDF
    Background: Since women pay more attention to their skin�s health, pharmaceutical companies invest heavily on skin care product development. Further, the success of drug nano-carriers in passing through the skin justifies the need to conduct studies at the nano-scale. β1-integrin down regulation has been proposed as a sign of skin aging. Methods: Six drug nano-carriers (50 and 75 nm) were prepared at three ethanol concentrations (0, 3,and 5) and different temperatures. Then, the impact of Nanocarriers on fibroblasts were investigated. Results: DLS showed that increasing ethanol concentration decreased the surface tension that caused a decrease in the particle size in non-temperature formulations while increasing the temperature to 60 °C to lower Gibbs free energy increased the particle size. Ethanol addition decreased β1-integrin over-expression, whereas larger nano-carriers induced an over-expression of β1-integrin, Bcl2/Bax ratio, and an increase in live cell number. β1-integrin over-expression did not correlate with the rate of fibroblast proliferation and NFκB expression. An increase in fibroblast mortality in relation to smaller nano-carriers was not only due to the increase in Bax ratio, but was related to NFκB over-expression. Conclusion: The development of a regenerative pharmaceutical approach in skin repair was based on the effect of particle size and ethanol concentration of the drug nano-carriers on the expression of β1-integrin in fibroblasts. A curcumin nanoformulation sized 77 nm and containing of 3 ethanol was more effective in increasing β1-integrin gene over-expression, anti-apoptosis of fibroblast cells (Bcl2/Bax ratio), and in decreasing Bax and NFκB gene expression than that with a particle size of 50 nm. Such a formulation may be considered a valuable candidate in anti-aging and wound-healing formulations. Figure not available: see fulltext.. © 2019, Springer Nature Switzerland AG
    corecore