390 research outputs found

    Absence of magnetic order for the spin-half Heisenberg antiferromagnet on the star lattice

    Full text link
    We study the ground-state properties of the spin-half Heisenberg antiferromagnet on the two-dimensional star lattice by spin-wave theory, exact diagonalization and a variational mean-field approach. We find evidence that the star lattice is (besides the \kagome lattice) a second candidate among the 11 uniform Archimedean lattices where quantum fluctuations in combination with frustration lead to a quantum paramagnetic ground state. Although the classical ground state of the Heisenberg antiferromagnet on the star exhibits a huge non-trivial degeneracy like on the \kagome lattice, its quantum ground state is most likely dimerized with a gap to all excitations. Finally, we find several candidates for plateaux in the magnetization curve as well as a macroscopic magnetization jump to saturation due to independent localized magnon states.Comment: new extended version (6 pages, 6 figures) as published in Physical Review

    Exact eigenstates of highly frustrated spin lattices probed in high fields

    Full text link
    Strongly frustrated antiferromagnets such as the magnetic molecule {Mo72Fe30}, the kagome, or the pyrochlore lattice exhibit a variety of fascinating properties like low-lying singlets, magnetization plateaus as well as magnetization jumps. During recent years exact many-body eigenstates could be constructed for several of these spin systems. These states become ground states in high magnetic fields, and they also lead to exotic behavior. A key concept to an understanding of these properties is provided by independent localized magnons. The energy eigenvalue of these n-magnon states scales linearly with the number n of independent magnons and thus with the total magnetic quantum number M=Ns-n. In an applied field this results in a giant magnetization jump which constitutes a new macroscopic quantum effect. It will be demonstrated that this behavior is accompanied by a massive degeneracy, an extensive (T=0)-entropy, and thus a large magnetocaloric effect at the saturation field. The connection to flat band ferromagnetism will be outlined.Comment: 4 pages, submitted to the proceedings of the Yamada Conference LX on Research in High Magnetic Fields, August 16-19, 2006 Sendai, Japa

    A Comparative Study of the Magnetization Process of Two-Dimensional Antiferromagnets

    Full text link
    Plateaux in the magnetization curves of the square, triangular and hexagonal lattice spin-1/2 XXZ antiferromagnet are investigated. One finds a zero magnetization plateau (corresponding to a spin-gap) on the square and hexagonal lattice with Ising-like anisotropies, and a plateau with one third of the saturation magnetization on the triangular lattice which survives a small amount of easy-plane anisotropy. Here we start with transfer matrix computations for the Ising limit and continue with series in the XXZ-anisotropy for plateau-boundaries using the groundstates of the Ising limit. The main focus is then a numerical computation of the magnetization curves with anisotropies in the vicinity of the isotropic situation. Finally, we discuss the universality class associated to the asymptotic behaviour of the magnetization curve close to saturation, as observed numerically in two and higher dimensions.Comment: 21 pages plain TeX (with macro package included), 7 PostScript figures included using psfig.st

    Enhanced magnetocaloric effect in frustrated magnetic molecules with icosahedral symmetry

    Full text link
    We investigate the magnetocaloric properties of certain antiferromagnetic spin systems that have already been or very likely can be synthesized as magnetic molecules. It turns out that the special geometric frustration which is present in antiferromagnets that consist of corner-sharing triangles leads to an enhanced magnetocaloric effect with high cooling rates in the vicinity of the saturation field. These findings are compared with the behavior of a simple unfrustrated spin ring as well as with the properties of the icosahedron. To our surprise, also for the icosahedron large cooling rates can be achieved but due to a different kind of geometric frustration.Comment: 5 pages, 8 figures, more information at http://obelix.physik.uni-osnabrueck.de/~schnack

    Magnetism of Finite Graphene Samples: Mean-Field Theory compared with Exact Diagonalization and Quantum Monte Carlo Simulation

    Full text link
    The magnetic properties of graphene on finite geometries are studied using a self-consistent mean-field theory of the Hubbard model. This approach is known to predict ferromagnetic edge states close to the zig-zag edges in single-layer graphene quantum dots and nanoribbons. In order to assess the accuracy of this method, we perform complementary exact diagonalization and quantum Monte Carlo simulations. We observe good quantitative agreement for all quantities investigated provided that the Coulomb interaction is not too strong.Comment: 5 pages including 3 figures; v3: error concerning middle panel of Fig. 3 correcte

    Phenomenological Issues in TeV scale Gravity with Light Neutrino Masses

    Get PDF
    The possible existence of bulk singlet neutrinos in the scenario with large compactified dimensions and low string scale MM_* has important consequences for low-energy observables. We demonstrate that intergenerational mass splitting and mixing lead to the effective violation of the lepton universality and flavor changing processes in charged lepton sector. Current experimental constraints push MM_* to the scale of 10 TeV over most of the interesting range for neutrino mass splitting.Comment: 12 pages. Standard Latex. 2 eps figures. Minor changes, to appear in Physics Letters

    Finite-temperature ordering in a two-dimensional highly frustrated spin model

    Full text link
    We investigate the classical counterpart of an effective Hamiltonian for a strongly trimerized kagome lattice. Although the Hamiltonian only has a discrete symmetry, the classical groundstate manifold has a continuous global rotational symmetry. Two cases should be distinguished for the sign of the exchange constant. In one case, the groundstate has a 120^\circ spin structure. To determine the transition temperature, we perform Monte-Carlo simulations and measure specific heat, the order parameter as well as the associated Binder cumulant. In the other case, the classical groundstates are macroscopically degenerate. A thermal order-by-disorder mechanism is predicted to select another 120^\circ spin-structure. A finite but very small transition temperature is detected by Monte-Carlo simulations using the exchange method.Comment: 11 pages including 9 figures, uses IOP style files; to appear in J. Phys.: Condensed Matter (proceedings of HFM2006

    High-Order Coupled Cluster Method Study of Frustrated and Unfrustrated Quantum Magnets in External Magnetic Fields

    Full text link
    We apply the coupled cluster method (CCM) in order to study the ground-state properties of the (unfrustrated) square-lattice and (frustrated) triangular-lattice spin-half Heisenberg antiferromagnets in the presence of external magnetic fields. Here we determine and solve the basic CCM equations by using the localised approximation scheme commonly referred to as the `LSUBmm' approximation scheme and we carry out high-order calculations by using intensive computational methods. We calculate the ground-state energy, the uniform susceptibility, the total (lattice) magnetisation and the local (sublattice) magnetisations as a function of the magnetic field strength. Our results for the lattice magnetisation of the square-lattice case compare well to those results of QMC for all values of the applied external magnetic field. We find a value for magnetic susceptibility of χ=0.070\chi=0.070 for the square-lattice antiferromagnet, which is also in agreement with the results of other approximate methods (e.g., χ=0.0669\chi=0.0669 via QMC). Our estimate for the range of the extent of the (M/Ms=M/M_s=)13\frac 13 magnetisation plateau for the triangular-lattice antiferromagnet is 1.37<λ<2.151.37< \lambda < 2.15, which is in good agreement with results of spin-wave theory (1.248<λ<2.1451.248 < \lambda < 2.145) and exact diagonalisations (1.38<λ<2.161.38 < \lambda < 2.16). The CCM value for the in-plane magnetic susceptibility per site is χ=0.065\chi=0.065, which is below the result of the spin-wave theory (evaluated to order 1/S) of χSWT=0.0794\chi_{SWT}=0.0794.Comment: 30 pages, 13 figures, 1 Tabl

    Lanczos algorithm with Matrix Product States for dynamical correlation functions

    Get PDF
    The density-matrix renormalization group (DMRG) algorithm can be adapted to the calculation of dynamical correlation functions in various ways which all represent compromises between computational efficiency and physical accuracy. In this paper we reconsider the oldest approach based on a suitable Lanczos-generated approximate basis and implement it using matrix product states (MPS) for the representation of the basis states. The direct use of matrix product states combined with an ex-post reorthogonalization method allows to avoid several shortcomings of the original approach, namely the multi-targeting and the approximate representation of the Hamiltonian inherent in earlier Lanczos-method implementations in the DMRG framework, and to deal with the ghost problem of Lanczos methods, leading to a much better convergence of the spectral weights and poles. We present results for the dynamic spin structure factor of the spin-1/2 antiferromagnetic Heisenberg chain. A comparison to Bethe ansatz results in the thermodynamic limit reveals that the MPS-based Lanczos approach is much more accurate than earlier approaches at minor additional numerical cost.Comment: final version 11 pages, 11 figure
    corecore