1,270 research outputs found

    Generic medicines are not substandard medicines.

    Get PDF

    Practical formulation of the relation between filter specifications and the requirements for integrator circuits

    Get PDF
    The design of integrated, high-frequency, continuous-time filters has made considerable progress in the past few years. As the signal frequencies increase the design of the integrator circuits used in most of these filters becomes more critical. To give direction to the circuit design, minimum specifications for the gain and phase of the integrator circuits would be helpful. A practical method for obtaining these integrator specifications from the filter specifications is developed. The method is applied to a sixth-order Chebyshev band-pass filter, and the result is verified by computer simulatio

    Literature-based priors for gene regulatory networks

    Get PDF
    Motivation: The use of prior knowledge to improve gene regulatory network modelling has often been proposed. In this paper we present the first research on the massive incorporation of prior knowledge from literature for Bayesian network learning of gene networks. As the publication rate of scientific papers grows, updating online databases, which have been proposed as potential prior knowledge in past rese-arch, becomes increasingly challenging. The novelty of our approach lies in the use of gene-pair association scores that describe the over-lap in the contexts in which the genes are mentioned, generated from a large database of scientific literature, harnessing the information contained in a huge number of documents into a simple, clear format. Results: We present a method to transform such literature-based gene association scores to network prior probabilities, and apply it to learn gene sub-networks for yeast, E. coli and Human organisms. We also investigate the effect of weighting the influence of the prior know-ledge. Our findings show that literature-based priors can improve both the number of true regulatory interactions present in the network and the accuracy of expression value prediction on genes, in comparison to a network learnt solely from expression data. Networks learnt with priors also show an improved biological interpretation, with identified subnetworks that coincide with known biological pathways. Contact

    Trade systems in less-developed countries.

    Get PDF

    Joint modeling of ChIP-seq data via a Markov random field model

    Get PDF
    Chromatin ImmunoPrecipitation-sequencing (ChIP-seq) experiments have now become routine in biology for the detection of protein-binding sites. In this paper, we present a Markov random field model for the joint analysis of multiple ChIP-seq experiments. The proposed model naturally accounts for spatial dependencies in the data, by assuming first-order Markov dependence and, for the large proportion of zero counts, by using zero-inflated mixture distributions. In contrast to all other available implementations, the model allows for the joint modeling of multiple experiments, by incorporating key aspects of the experimental design. In particular, the model uses the information about replicates and about the different antibodies used in the experiments. An extensive simulation study shows a lower false non-discovery rate for the proposed method, compared with existing methods, at the same false discovery rate. Finally, we present an analysis on real data for the detection of histone modifications of two chromatin modifiers from eight ChIP-seq experiments, including technical replicates with different IP efficiencies
    corecore