25 research outputs found

    Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury

    Get PDF
    BackgroundReduced lower limb blood flow and resistive hemodynamic conditions potentially promote aortic inflammation and aneurysmal degeneration. We used abdominal ultrasonography, magnetic resonance imaging, and computational flow modeling to determine the relationship between reduced infrarenal aortic blood flow in chronic spinal cord injury (SCI) subjects and risk for abdominal aortic aneurysm (AAA) disease.MethodsAortic diameter in consecutive SCI subjects (n = 123) was determined via transabdominal ultrasonography. Aortic anatomic and physiologic data were acquired via magnetic resonance angiography (MRA; n = 5) and cine phase-contrast magnetic resonance flow imaging (n = 4) from SCI subjects whose aortic diameter was less than 3.0 cm by ultrasonography. Computational flow models were constructed from magnetic resonance data sets. Results were compared with those obtained from ambulatory control subjects (ultrasonography, n = 129; MRA/phase-contrast magnetic resonance flow imaging, n = 6) who were recruited at random from a larger pool of risk factor–matched individuals without known AAA disease.ResultsAge, sex distribution, and smoking histories were comparable between the SCI and control groups. In the SCI group, time since injury averaged 26 ± 13 years (mean ± SD). Aortic diameter was larger (P < .01), and the prevalence of large (≥2.5 cm; P < .01) or aneurysmal (≥3.0 cm; P < .05) aortas was greater in SCI subjects. Paradoxically, common iliac artery diameters were reduced in SCI subjects (<1.0 cm; 48% SCI vs 26% control; P < .0001). Focal preaneurysmal enlargement was noted in four of five SCI subjects by MRA. Flow modeling revealed normal flow volume, biphasic and reduced oscillatory flow, slower pressure decay, and reduced wall shear stress in the SCI infrarenal aorta.ConclusionsCharacteristic aortoiliac hemodynamic and morphologic adaptations occur in response to chronic SCI. Slower aortic pressure decay and reduced wall shear stress after SCI may contribute to mural degeneration, enlargement, and an increased prevalence of AAA disease

    Middle East - North Africa and the millennium development goals : implications for German development cooperation

    Get PDF
              Closed-loop controlled combustion is a promising technique to improve the overall performance of internal combustion engines and Diesel engines in particular. In order for this technique to be implemented some form of feedback from the combustion process is required. The feedback signal is processed and from it combustionrelated parameters are computed. These parameters are then fed to a control process which drives a series of outputs (e.g. injection timing in Diesel engines) to control their values. This paper’s focus lies on the processing and computation that is needed on the feedback signal before this is ready to be fed to the control process as well as on the electronics necessary to support it. A number of feedback alternatives are briefly discussed and for one of them, the in-cylinder pressure sensor, the CA50 (crank angle in which the integrated heat release curve reaches its 50% value) and the IMEP (Indicated Mean Effective Pressure) are identified as two potential control variables. The hardware architecture of a system capable of calculating both of them on-line is proposed and necessary feasibility size and speed considerations are made by implementing critical blocks in VHDL targeting a flash-based Actel ProASIC3 automotive-grade FPGA

    Magnetic resonance imaging goes postmortem: noninvasive detection and assessment of myocardial infarction by postmortem MRI

    Full text link
    OBJECTIVE: To investigate the performance of postmortem magnetic resonance imaging (pmMRI) in identification and characterization of lethal myocardial infarction in a non-invasive manner on human corpses. MATERIALS AND METHODS: Before forensic autopsy, 20 human forensic corpses were examined on a 1.5-T system for the presence of myocardial infarction. Short axis, transversal and longitudinal long axis images (T1-weighted; T2-weighted; PD-weighted) were acquired in situ. In subsequent autopsy, the section technique was adapted to short axis images. Histological investigations were conducted to confirm autopsy and/or radiological diagnoses. RESULTS: Nineteen myocardial lesions were detected and age staged with pmMRI, of which 13 were histologically confirmed (chronic, subacute and acute). Six lesions interpreted as peracute by pmMRI showed no macroscopic or histological finding. Five of the six peracute lesions correlated well to coronary pathology, and one case displayed a severe hypertrophic alteration. CONCLUSION: pmMRI reliably demonstrates chronic, subacute and acute myocardial infarction in situ. In peracute cases pmMRI may display ischemic lesions undetectable at autopsy and routine histology. pmMRI has the potential to substantiate autopsy and to counteract the loss of reliable information on causes of death due to the recent disappearance of the clinical autopsy
    corecore