551 research outputs found

    HAL/S-360 compiler system specification

    Get PDF
    A three phase language compiler is described which produces IBM 360/370 compatible object modules and a set of simulation tables to aid in run time verification. A link edit step augments the standard OS linkage editor. A comprehensive run time system and library provide the HAL/S operating environment, error handling, a pseudo real time executive, and an extensive set of mathematical, conversion, I/O, and diagnostic routines. The specifications of the information flow and content for this system are also considered

    A study of patent thickets

    Get PDF
    Report analysing whether entry of UK enterprises into patenting in a technology area is affected by patent thickets in the technology area

    Price, Yield and Net Income Variability for Selected Field Crops and Counties in Nebraska

    Get PDF
    The primary objective of this study was to establish an empirical estimate of the riskiness of various crops in different regions of Nebraska. For this purpose the variate difference method was used to estimate random variability indexes of prices, yields, and net returns for six Nebraska crops (wheat, soybeans, alfalfa, oats, grain sorghum, corn). The period of analysis included 1957-1976 and one county in each of the eight crop reporting districts was analyzed. Where relevant, both dryland and irrigated alternatives were examined. Most business decision-makers accept more risk only under the conditions that the probability of higher returns accompany risky choices. The authors believe that information in this report can be used by Nebraska farmers when deciding what crops to grow. Variability indexes can provide information regarding the riskiness of the various enterprises. The authors recognize that diversification can also be a useful approach to decrease net return variability along with insurance, commodity programs, and more sophisticated risk reducing strategies

    An Algebraic Pairing Model with Sp(4) Symmetry and its Deformation

    Full text link
    A fermion realization of the compact symplectic sp(4) algebra provides a natural framework for studying isovector pairing correlations in nuclei. While these correlations manifest themselves most clearly in the binding energies of 0^+ ground states, they also have a large effect on the energies of excited states, including especially excited 0^+ states. In this article we consider non-deformed as well as deformed algebraic descriptions of pairing through the reductions of sp_{(q)}(4) to different realizations of u_{(q)}(2) for single-j and multi-j orbitals. The model yields a classification scheme for completely paired 0^{+} states of even-even and odd-odd nuclei in the 1d_{3/2}, 1f_{7/2}, and 1f_{5/2}2p_{1/2}2p_{3/2}1g_{9/2} shells. Phenomenological non-deformed and deformed isospin-breaking Hamiltonians are expressed in terms of the generators of the dynamical symmetry groups Sp(4) and Sp_{q}(4). These Hamiltonians are related to the most general microscopic pairing problem, including isovector pairing and isoscalar proton-neutron interaction along with non-linear interaction in the deformed extension. In both the non-deformed and deformed cases the eigenvalues of the Hamiltonian are fit to the relevant Coulomb corrected experimental 0^{+} energies and this, in turn, allows us to estimate the interaction strength parameters, to investigate isovector-pairing properties and symmetries breaking, and to predict the corresponding energies. While the non-deformed theory yields results that are comparable to other theories for light nuclei, the deformed extension, which takes into account higher-order interactions between the particles, gives a better fit to the data. The multi-shell applications of the model provide for reasonable predictions of energies of exotic nuclei.Comment: 19 pages, 5 figures minor changes; improvements to achieve a better and clearer presentation of our messages and idea

    Wheat and Feed Grains in the Great Plains and Northwest: Study Area Descriptions and State Statistical Summaries

    Get PDF
    The objectives are: (1) To determine individual farm-supply response for alternative product-price relationships and price levels with emphasis on wheat, feed grains, cotton and livestock (2) To estimate aggregate subregional and regional supply functions for major commodities (3) To provide guides for optimum farm organizations and adjustments and attendant adjustments by farm-related businesses and institutions in the Great Plains and Western States

    A Design Aid for Determining Width of Filter Strips

    Get PDF
    Watershed planners need a tool for determining width of filter strips that is accurate enough for developing cost-effective site designs and easy enough to use for making quick determinations on a large number and variety of sites. This study employed the process-based Vegetative Filter Strip Model to evaluate the relationship between filter strip width and trap¬ping efficiency for sediment and water and to produce a design aid for use where specific water quality targets must be met. Model simulations illustrate that relatively narrow filter strips can have high impact in some situations, while in others even a modest impact cannot be achieved at any practical width. A graphical design aid was developed for estimating the width needed to achieve target trapping efficiencies for different pollutants under a broad range of agricultural site conditions. Using the model simulations for sediment and water, a graph was produced containing a family of seven lines that divide the full range of possible relationships between width and trapping efficiency into fairly even increments. Simple rules guide the selection of one line that best describes a given field situation by considering field length and cover management, slope, and soil texture. Relationships for sediment-bound and dissolved pollutants are interpreted from the modeled relationships for sediment and water. Interpolation between lines can refine the results and account for additional variables, if needed. The design aid is easy to use, accounts for several major variables that determine filter strip performance, and is based on a validated, process-based, mathematical model. This design aid strikes a balance between accuracy and utility that fills a wide gap between existing design guides and mathematical models

    A Design Aid for Determining Width of Filter Strips

    Get PDF
    Watershed planners need a tool for determining width of filter strips that is accurate enough for developing cost-effective site designs and easy enough to use for making quick determinations on a large number and variety of sites. This study employed the process-based Vegetative Filter Strip Model to evaluate the relationship between filter strip width and trap¬ping efficiency for sediment and water and to produce a design aid for use where specific water quality targets must be met. Model simulations illustrate that relatively narrow filter strips can have high impact in some situations, while in others even a modest impact cannot be achieved at any practical width. A graphical design aid was developed for estimating the width needed to achieve target trapping efficiencies for different pollutants under a broad range of agricultural site conditions. Using the model simulations for sediment and water, a graph was produced containing a family of seven lines that divide the full range of possible relationships between width and trapping efficiency into fairly even increments. Simple rules guide the selection of one line that best describes a given field situation by considering field length and cover management, slope, and soil texture. Relationships for sediment-bound and dissolved pollutants are interpreted from the modeled relationships for sediment and water. Interpolation between lines can refine the results and account for additional variables, if needed. The design aid is easy to use, accounts for several major variables that determine filter strip performance, and is based on a validated, process-based, mathematical model. This design aid strikes a balance between accuracy and utility that fills a wide gap between existing design guides and mathematical models

    Agricultural Conservation Planning Framework: 1. Developing Multipractice Watershed Planning Scenarios and Assessing Nutrient Reduction Potential

    Get PDF
    Spatial data on soils, land use, and topography, combined with knowledge of conservation effectiveness, can be used to identify alternatives to reduce nutrient discharge from small (hydrologic unit code [HUC]12) watersheds. Databases comprising soil attributes, agricultural land use, and light detection and ranging–derived elevation models were developed for two glaciated midwestern HUC12 watersheds: Iowa’s Beaver Creek watershed has an older dissected landscape, and Lime Creek in Illinois is young and less dissected. Subsurface drainage is common in both watersheds. We identified locations for conservation practices, including in-field practices (grassed waterways), edge-of-field practices (nutrient-removal wetlands, saturated buffers), and drainage-water management, by applying terrain analyses, geographic criteria, and cross-classifications to field- and watershed-scale geographic data. Cover crops were randomly distributed to fields without geographic prioritization. A set of alternative planning scenarios was developed to represent a variety of extents of implementation among these practices. The scenarios were assessed for nutrient reduction potential using a spreadsheet approach to calculate the average nutrient-removal efficiency required among the practices included in each scenario to achieve a 40% NO3–N reduction. Results were evaluated in the context of the Iowa Nutrient Reduction Strategy, which reviewed nutrient-removal efficiencies of practices and established the 40% NO3–N reduction as Iowa’s target for Gulf of Mexico hypoxia mitigation by agriculture. In both test watersheds, planning scenarios that could potentially achieve the targeted NO3–N reduction but remov

    Co- and post-translational translocation through the protein-conducting channel:analogous mechanisms at work?

    Get PDF
    Many proteins are translocated across, or integrated into, membranes. Both functions are fulfilled by the 'translocon/translocase', which contains a membrane-embedded proteinconducting channel (PCC) and associated soluble factors that drive translocation and insertion reactions using nucleotide triphosphates as fuel. This perspective focuses on reinterpreting existing experimental data in light of a recently proposed PCC model comprising a front-to-front dimer of SecY or Sec61 heterotrimeric complexes. In this new framework, we propose (i) a revised model for SRP-SR-mediated docking of the ribosome-nascent polypeptide to the PCC; (ii) that the dynamic interplay between protein substrate, soluble factors and PCC controls the opening and closing of a transmembrane channel across, and/or a lateral gate into, the membrane; and (iii) that co-and post-translational translocation, involving the ribosome and SecA, respectively, not only converge at the PCC but also use analogous mechanisms for coordinating protein translocation
    corecore