4 research outputs found
Anisotropic electron g factor as a probe of the electronic structure of GaBi x As 1 â x / GaAs epilayers
International audienceThe electron LandĂ© g factor (gâ) is investigated both experimentally and theoretically in a series of GaBixAs1âx/GaAs strained epitaxial layers, for bismuth compositions up to x=3.8%. We measure gâ via time-resolved photoluminescence spectroscopy, which we use to analyze the spin quantum beats in the polarization of the photoluminescence in the presence of an externally applied magnetic field. The experimental measurements are compared directly to atomistic tight-binding calculations on large supercells, which allows us to explicitly account for alloy disorder effects. We demonstrate that the magnitude of gâ increases strongly with increasing Bi composition x and, based on the agreement between the theoretical calculations and experimental measurements, elucidate the underlying causes of the observed variation of gâ. By performing measurements in which the orientation of the applied magnetic field is changed, we further demonstrate that gâ is strongly anisotropic. We quantify the observed variation of gâ with x, and its anisotropy, in terms of a combination of epitaxial strain and Bi-induced hybridization of valence states due to alloy disorder, which strongly perturbs the electronic structure