35 research outputs found

    Consistent partial bosonization of the extended Hubbard model

    Full text link
    We design an efficient and balanced approach that captures major effects of collective electronic fluctuations in strongly correlated fermionic systems using a simple diagrammatic expansion on a basis of dynamical mean-field theory. For this aim we perform a partial bosonization of collective fermionic fluctuations in leading channels of instability. We show that a simultaneous account for different bosonic channels can be done in a consistent way that allows to avoid the famous Fierz ambiguity problem. The present method significantly improves a description of an effective screened interaction W in both charge and spin channels, and has a great potential for application to realistic GW-like calculations for magnetic materials. © 2019 American Physical Society

    Impact of partially bosonized collective fluctuations on electronic degrees of freedom

    Get PDF
    In this work we present a comprehensive analysis of collective electronic fluctuations and their effect on single-particle properties of the Hubbard model. Our approach is based on a standard dual fermion/boson scheme with the interaction truncated at the two-particle level. Within this framework we compare various approximations that differ in the set of diagrams (ladder vs exact diagrammatic Monte Carlo), and/or in the form of the four-point interaction vertex (exact vs partially bosonized). This allows to evaluate the effect of all components of the four-point vertex function on the electronic self-energy. In particular, we observe that contributions that are not accounted for by the partially bosonized approximation for the vertex have only a minor effect on electronic degrees of freedom in a broad range of model parameters. In addition, we find that in the regime, where the ladder dual fermion approximation provides an accurate solution of the problem, the leading contribution to the self-energy is given by the longitudional bosonic modes. This can be explained by the fact that contributions of transverse particle-hole and particle-particle modes partially cancel each other. Our results justify the applicability of the recently introduced dual triply irreducible local expansion (D-TRILEX) method that represents one of the simplest consistent diagrammatic extensions of the dynamical mean-field theory. We find that the self-consistent D-TRILEX approach is reasonably accurate also in challenging regimes of the Hubbard model, even where the dynamical mean-field theory does not provide the optimal local reference point (impurity problem) for the diagrammatic expansion

    Multi-band D-TRILEX approach to materials with strong electronic correlations

    Get PDF
    We present the multi-band dual triply irreducible local expansion (D-TRILEX) approach to interacting electronic systems and discuss its numerical implementation. This method is designed for a self-consistent description of multi-orbital systems that can also have several atoms in the unit cell. The current implementation of the D-TRILEX approach is able to account for the frequency- and channel-dependent long-ranged electronic interactions. We show that our method is accurate when applied to small multi-band systems such as the Hubbard-Kanamori dimer. Calculations for the extended Hubbard, the two-orbital Hubbard-Kanamori, and the bilayer Hubbard models are also discussed

    Extended regime of coexisting metallic and insulating phases in a two-orbital electronic system

    Full text link
    We investigate the metal-to-insulator phase transition driven by electronic interactions in the quarter-filled Hubbard-Kanamori model on a cubic lattice with two orbitals split by a crystal field. We show that a systematic consideration of the non-local collective electronic fluctuations strongly affects the state-of-the-art picture of the phase transition provided by the dynamical mean field theory. Our calculations reveal a region of phase coexistence between the metallic and the Mott insulating states, which is missing in the local approximation to electronic correlations. This coexistence region is remarkably broad in terms of the interaction strength. It starts at a critical value of the interaction slightly larger than the bandwidth and extends to more than twice the bandwidth, where the two solutions merge into a Mott insulating phase. Our results illustrate that non-local correlations can have crucial consequences on the electronic properties in the strongly correlated regime, even in the simplest multi-orbital systems

    Coexisting charge density wave and ferromagnetic instabilities in monolayer InSe

    Full text link
    Recently fabricated InSe monolayers exhibit remarkable characteristics that indicate the potential of this material to host a number of many-body phenomena. Here, we consistently describe collective electronic effects in hole-doped InSe monolayers using advanced many-body techniques. To this end, we derive a realistic electronic-structure model from first principles that takes into account the most important characteristics of this material, including a flat band with prominent van Hove singularities in the electronic spectrum, strong electron-phonon coupling, and weakly-screened long-ranged Coulomb interactions. We calculate the temperature-dependent phase diagram as a function of band filling and observe that this system is in a regime with coexisting charge density wave and ferromagnetic instabilities that are driven by strong electronic Coulomb correlations. This regime can be achieved at realistic doping levels and high enough temperatures, and can be verified experimentally. We find that the electron-phonon interaction does not play a crucial role in these effects, effectively suppressing the local Coulomb interaction without changing the qualitative physical picture

    STUDY OF CYLPEBS CHILLING

    Get PDF
    Methods of increasing the shock resistance of cast-iron grinding bodies are researched. The models of heat transfer in the process of casting and shock-abrasive wear are presented. Tooling to produce experimental samples of milling bodies chilling(gravity die casting) is manufactured, samples of cylpebs are produced

    СЛУЧАЙ МИОПАТИИ ЭРБА-РОТА

    Get PDF
    The article presents a clinical case of a patient with Erb-Roth’s hereditary neuromuscular dystrophy presented with severe cardiomyopathy.В статье представлен клинический случай развития тяжелой формы кардиомиопатии у пациента, страдающего наследственным нейромышечным заболеванием – миопатией Эрба-Рота

    Interaction of Cadmium and Ozone on a Woody and Herbaceous Species

    No full text

    Effect of Cadmium on Foliar Injury of Woody and Herbaceous Plants

    No full text
    corecore