1,950 research outputs found
Home testing for COVID-19: lessons from direct to consumer genetics
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.On March 11th, 2020, COVID-19 was declared a worldwide pandemic. Publicly available testing has lagged, and tech entrepreneurs have quickly volunteered to fill this gap. Over the last two decades, genetic testing ordered outside of a clinic and without the involvement of a physician has been a way for the average individual to get genetic testing. In this commentary, we discuss the lessons learned from this parallel case from genetics and suggest regulatory caution in establishing direct-to-consumer COVID testing
Use of complementary and alternative medicine by patients with hypermobile Ehlers–Danlos Syndrome: A qualitative study
BackgroundPatients with hypermobile Ehlers–Danlos Syndrome (hEDS) often make use of complementary and alternative medical (CAM) techniques to manage their chronic pain and other symptoms. Nevertheless, how they use CAM, which techniques they favor, and how CAM use affects their allopathic care remain unclear. The purpose of this qualitative study was to understand patients’ personal experiences with CAM and its role in their symptom management.Materials and methodsThirty individuals living with hEDS completed a brief online survey related to their CAM use. Thereafter, in-depth interviews were conducted with 24 of the survey respondents, qualitatively investigating their experiences with CAM. Data were analyzed using thematic analysis.ResultsParticipants described massage therapy (N = 21), medical cannabis (N = 12), and mindfulness (N = 13) as some of the most useful CAM modalities for managing symptoms related to hEDS, but they expressed a general interest in pursuing any treatment that could potentially reduce their chronic pain. They suggested an overall trust in CAM modalities and practitioners and ascribed greater empathy to CAM practitioners than to conventional medical providers. However, they also described a critical skepticism of CAM (and conventional) therapies and recounted instances of injury from such treatments.ConclusionParticipants made extensive use of CAM therapies. They described both critical benefits as well as harms from the use of these non-conventional modalities. These results underscore the importance of clinicians maintaining communicative and compassionate relationships with their patients, and of an openness to the discussion and use of CAM treatments
DASI Three-Year Cosmic Microwave Background Polarization Results
We present the analysis of the complete 3-year data set obtained with the
Degree Angular Scale Interferometer (DASI) polarization experiment, operating
from the Amundsen-Scott South Pole research station. Additional data obtained
at the end of the 2002 Austral winter and throughout the 2003 season were added
to the data from which the first detection of polarization of the cosmic
microwave background radiation was reported. The analysis of the combined data
supports, with increased statistical power, all of the conclusions drawn from
the initial data set. In particular, the detection of E-mode polarization is
increased to 6.3 sigma confidence level, TE cross-polarization is detected at
2.9 sigma, and B-mode polarization is consistent with zero, with an upper limit
well below the level of the detected E-mode polarization. The results are in
excellent agreement with the predictions of the cosmological model that has
emerged from CMB temperature measurements. The analysis also demonstrates that
contamination of the data by known sources of foreground emission is
insignificant.Comment: 13 pages Latex, 10 figures, submitted to Ap
Cosmological Parameter Extraction from the First Season of Observations with DASI
The Degree Angular Scale Interferometer (\dasi) has measured the power
spectrum of the Cosmic Microwave Background anisotropy over the range of
spherical harmonic multipoles 100<l<900. We compare this data, in combination
with the COBE-DMR results, to a seven dimensional grid of adiabatic CDM models.
Adopting the priors h>0.45 and 0.0<=tau_c<=0.4, we find that the total density
of the Universe Omega_tot=1.04+/-0.06, and the spectral index of the initial
scalar fluctuations n_s=1.01+0.08-0.06, in accordance with the predictions of
inflationary theory. In addition we find that the physical density of baryons
Omega_b.h^2=0.022+0.004-0.003, and the physical density of cold dark matter
Omega_cdm.h^2=0.14+/-0.04. This value of Omega_b.h^2 is consistent with that
derived from measurements of the primordial abundance ratios of the light
elements combined with big bang nucleosynthesis theory. Using the result of the
HST Key Project h=0.72+/-0.08 we find that Omega_t=1.00+/-0.04, the matter
density Omega_m=0.40+/-0.15, and the vacuum energy density
Omega_lambda=0.60+/-0.15. (All 68% confidence limits.)Comment: 7 pages, 4 figures, minor changes in response to referee comment
Deficient Response to COVID-19 Makes the Case for Evolving the Public Health System
Coronavirus disease 2019 (COVID-19) has affected more than 14 million individuals and caused more than 600,000 deaths as of July 20, 2020, rapidly spreading across large cities as well as many rural areas. In parallel with rising cases and deaths globally, the situation in local communities fluctuates daily while knowledge about the disease and transmission evolves. Public health agencies play a critical role in managing disease epidemics. Agencies are on the front lines to conduct disease surveillance, facilitate resource distribution including personal protective equipment (PPE), establish alternative care sites, and provide diagnostic support through laboratory testing. The public health response to COVID-19 has been criticized for being too slow, lacking transparency, and insufficient. This essay examines reasons behind the sluggish response to COVID-19. The authors then argue for an evolved public health system following the crisis, which is better prepared for emergencies and equipped to support population health for the future
The Impact of Atmospheric Fluctuations on Degree-scale Imaging of the Cosmic Microwave Background
Fluctuations in the brightness of the Earth's atmosphere originating from
water vapor are an important source of noise for ground-based instruments
attempting to measure anisotropy in the Cosmic Microwave Background. This paper
presents a model for the atmospheric fluctuations and derives simple
expressions to predict the contribution of the atmosphere to experimental
measurements. Data from the South Pole and from the Atacama Desert in Chile,
two of the driest places on Earth, are used to assess the level of fluctuations
at each site.Comment: 29 pages, 7 figures, 1 table, appears in The Astrophysical Journa
Phase measurement device using inphase and quadrature components for phase estimation
A phasemeter for estimating the phase of a signal. For multi-tone signals, multiple phase estimates may be provided. An embodiment includes components operating in the digital domain, where a sampled input signal is multiplied by cosine and sine terms to provide estimates of the inphase and quadrature components. The quadrature component provides an error signal that is provided to a feedback loop, the feedback loop providing a model phase that tends to track the phase of a tone in the input signal. The cosine and sine terms are generated from the model phase. The inphase and quadrature components are used to form a residual phase, which is added to the model phase to provide an estimate of the phase of the input signal. Other embodiments are described and claimed
Comparison of the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA Standard 90.1-1999 and ASHRAE/ANSI/IESNA Standard 90.1-2004
This document presents the qualitative comparison of DOE’s formal determination of energy savings of ANSI/ASHRAE/IESNA Standard 90.1-2004. The term “qualitative” is used in the sense of identifying whether or not changes have a positive, negative, or neutral impact on energy efficiency of the standard, with no attempt made to quantify that impact. A companion document will present the quantitative comparison of DOE’s determination. The quantitative comparison will be based on whole building simulation of selected building prototypes in selected climates. This document presents a comparison of the energy efficiency requirements in ANSI/ASHRAE/IESNA 90.1-1999 (herein referred to as Standard 90.1-1999) and ANSI/ASHRAE/IESNA 90.1-2004 (herein referred to as Standard 90.1-2004). The comparison was done through a thorough review of all addenda to Standard 90.1-1999 that were included in the published ANSI/ASHRAE/IESNA Standard 90.1-2001 (herein referred to as Standard 90.1-2001) and also all addenda to Standard 90.1-2001 that were included in the published Standard 90.1-2004. A summary table showing the impact of each addendum is provided. Each addendum to both Standards 90.1-1999 and 90.1-2001 was evaluated as to its impact on the energy efficiency requirements of the standard (greater efficiency, lesser efficiency) and as to significance. The final section of this document summarizes the impacts of the various addenda and proposes which addenda should be included in the companion quantitative portion of DOE’s determination. Addenda are referred to with the nomenclature addendum 90.1-xxz, where “xx” is either “99” for 1999 or “01” for 2001, and z is the ASHRAE letter designation for the addendum. Addenda names are shown in bold face in text. DOE has chosen not to prepare a separate evaluation of Standard 90.1-2001 as that standard does not appear to improve energy efficiency in commercial buildings. What this means for the determination of energy savings for Standard 90.1-2004 is that the baseline standard for comparison is Standard 90.1-1999 and all addenda to both Standards 90.1-1999 and 90.1-2001 must be considered to determine the overall change in efficiency between Standard 90.1-1999 and Standard 90.1-2004
Archeops: an instrument for present and future cosmology
Archeops is a balloon-borne instrument dedicated to measure the cosmic
microwave background (CMB) temperature anisotropies. It has, in the millimetre
domain (from 143 to 545 GHz), a high angular resolution (about 10 arcminutes)
in order to constrain high l multipoles, as well as a large sky coverage
fraction (30%) in order to minimize the cosmic variance. It has linked, before
WMAP, Cobe large angular scales to the first acoustic peak region. From its
results, inflation motivated cosmologies are reinforced with a flat Universe
(Omega_tot=1 within 3%). The dark energy density and the baryonic density are
in very good agreement with other independent estimations based on supernovae
measurements and big bang nucleosynthesis. Important results on galactic dust
emission polarization and their implications for Planck are also addressed.Comment: 4 pages, 2 figures, to appear in Proceedings of the Multiwavelength
Cosmology Conference, June 2003, Mykonos Island, Greec
DASI First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum
We present measurements of anisotropy in the Cosmic Microwave Background
(CMB) from the first season of observations with the Degree Angular Scale
Interferometer (DASI). The instrument was deployed at the South Pole in the
austral summer 1999--2000, and made observations throughout the following
austral winter. We have measured the angular power spectrum of the CMB in the
range 100<l<900 with high signal-to-noise. In this paper we review the
formalism used in the analysis, in particular the use of constraint matrices to
project out contaminants such as ground and point source signals, and to test
for correlations with diffuse foreground templates. We find no evidence of
foregrounds other than point sources in the data, and find a maximum likelihood
temperature spectral index beta = -0.1 +/- 0.2 (1 sigma), consistent with CMB.
We detect a first peak in the power spectrum at l approx 200, in agreement with
previous experiments. In addition, we detect a peak in the power spectrum at l
approx 550 and power of similar magnitude at l approx 800 which are consistent
with the second and third harmonic peaks predicted by adiabatic inflationary
cosmological models.Comment: 8 pages, 1 figure, minor changes in response to referee comment
- …