479 research outputs found

    The Chemistry of the Triterpenes and Related Compounds. Part XXXII.* The Chemistry of Hydroxyhopanone

    Get PDF
    The functional groups of hydroxyhopanone, a saturated C30H50O2 pentacyclic triterpene keto-alcohol have been characterised and a tentative structure for hydroxyhopanone is proposed

    Pressure coefficients of Raman modes of carbon nanotubes resolved by chirality: Environmental effect on graphene sheet

    Get PDF
    Studies of the mechanical properties of single-walled carbon nanotubes are hindered by the availability only of ensembles of tubes with a range of diameters. Tunable Raman excitation spectroscopy picks out identifiable tubes. Under high pressure, the radial breathing mode shows a strong environmental effect shown here to be largely independent of the nature of the environment . For the G-mode, the pressure coefficient varies with diameter consistent with the thick-wall tube model. However, results show an unexpectedly strong environmental effect on the pressure coefficients. Reappraisal of data for graphene and graphite gives the G-mode Grueuneisen parameter gamma = 1.34 and the shear deformation parameter beta = 1.34.Comment: Submitted to Physical Review

    Histone modifications form a cell-type-specific chromosomal bar code that persists through the cell cycle.

    Get PDF
    Chromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10-50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1-5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses

    Recognizing and managing a malignant hyperthermia crisis: guidelines from the European Malignant Hyperthermia Group

    Get PDF
    Survival from a malignant hyperthermia (MH) crisis is highly dependent on early recognition and prompt action. MH crises are very rare and an increasing use of total i.v. anaesthesia is likely to make it even rarer, leading to the potential risk of reduced awareness of MH. In addition, dantrolene, the cornerstone of successful MH treatment, is unavailable in large areas around the world thereby increasing the risk of MH fatalities in these areas. The European Malignant Hyperthermia Group collected and reviewed all guidelines available from the various MH centres in order to provide a consensus document. The guidelines consist of two textboxes: Box 1 on recognizing MH and Box 2 on the treatment of an MH crisi

    The CMS Tracker Readout Front End Driver

    Full text link
    The Front End Driver, FED, is a 9U 400mm VME64x card designed for reading out the Compact Muon Solenoid, CMS, silicon tracker signals transmitted by the APV25 analogue pipeline Application Specific Integrated Circuits. The FED receives the signals via 96 optical fibers at a total input rate of 3.4 GB/sec. The signals are digitized and processed by applying algorithms for pedestal and common mode noise subtraction. Algorithms that search for clusters of hits are used to further reduce the input rate. Only the cluster data along with trigger information of the event are transmitted to the CMS data acquisition system using the S-LINK64 protocol at a maximum rate of 400 MB/sec. All data processing algorithms on the FED are executed in large on-board Field Programmable Gate Arrays. Results on the design, performance, testing and quality control of the FED are presented and discussed

    Graphene under hydrostatic pressure

    Full text link
    In-situ high pressure Raman spectroscopy is used to study monolayer, bilayer and few-layer graphene samples supported on silicon in a diamond anvil cell to 3.5 GPa. The results show that monolayer graphene adheres to the silicon substrate under compressive stress. A clear trend in this behaviour as a function of graphene sample thickness is observed. We also study unsupported graphene samples in a diamond anvil cell to 8 GPa, and show that the properties of graphene under compression are intrinsically similar to graphite. Our results demonstrate the differing effects of uniaxial and biaxial strain on the electronic bandstructure.Comment: Accepted in Physical Review B with minor change

    Energy levels in polarization superlattices: a comparison of continuum strain models

    Full text link
    A theoretical model for the energy levels in polarization superlattices is presented. The model includes the effect of strain on the local polarization-induced electric fields and the subsequent effect on the energy levels. Two continuum strain models are contrasted. One is the standard strain model derived from Hooke's law that is typically used to calculate energy levels in polarization superlattices and quantum wells. The other is a fully-coupled strain model derived from the thermodynamic equation of state for piezoelectric materials. The latter is more complete and applicable to strongly piezoelectric materials where corrections to the standard model are significant. The underlying theory has been applied to AlGaN/GaN superlattices and quantum wells. It is found that the fully-coupled strain model yields very different electric fields from the standard model. The calculated intersubband transition energies are shifted by approximately 5 -- 19 meV, depending on the structure. Thus from a device standpoint, the effect of applying the fully-coupled model produces a very measurable shift in the peak wavelength. This result has implications for the design of AlGaN/GaN optical switches.Comment: Revtex
    corecore