4,107 research outputs found

    Hole doped Hubbard ladders

    Full text link
    The formation of stripes in six-leg Hubbard ladders with cylindrical boundary conditions is investigated for two different hole dopings, where the amplitude of the hole density modulation is determined in the limits of vanishing DMRG truncation errors and infinitely long ladders. The results give strong evidence that stripes exist in the ground state of these systems for strong but not for weak Hubbard couplings. The doping dependence of these findings is analysed.Comment: 2 pages, 2 figures, submitted to SCES0

    Interseismic strain accumulation: Spin-up, cycle invariance, and irregular rupture sequences

    Get PDF
    Using models of infinite length strike-slip faults in an elastic layer above linear viscoelastic regions, we investigate interseismic deformation. In the models we investigate, interseismic strain accumulation on mature faults is the result of the cumulative effects of all previous ruptures and is independent of the fault loading conditions. The time for a fault to spin-up to a mature state depends on the rheologies and the fault loading conditions. After the model has spun-up, the temporal variation of shear stresses is determined by the fault slip rate and model rheologies. The change in stress during spin-up depends on the slip rate, rheologies, and fault loading conditions but is independent of the magnitude of the initial stress. Over enough cycles such that the cumulative deformation is block-like, the average mature interseismic velocities are equal to the interseismic velocities of an elastic model with the same geometry and distribution of shear moduli. In a model that has spun-up with the fault rupturing periodically, the cumulative deformation is block-like at the end of each seismic cycle, and the interseismic deformation is cycle-invariant (i.e., the same in all cycles). When the fault ruptures nonperiodically, the fault spins up to a mature state that is the same as if the fault had ruptured periodically with the mean slip rate. When the fault slip rate within each cycle varies, the interseismic deformation evolves toward the cycle-invariant deformation determined by the most recent fault slip rate. Around a fault whose slip rate has been faster (slower) than average, interseismic velocities are larger (smaller) than the cycle-invariant velocities and increase (decrease) from cycle to cycle

    The effects of rheological layering on post-seismic deformation

    Get PDF
    We examine the effects of rheological layering on post-seismic deformation using models of an elastic layer over a viscoelastic layer and a viscoelastic half-space. We extend a general linear viscoelastic theory we have previously proposed to models with two layers over a half-space, although we only consider univiscous Maxwell and biviscous Burgers rheologies. In layered viscoelastic models, there are multiple mechanical timescales of post-seismic deformation; however, not all of these timescales arise as distinct phases of post-seismic relaxation observed at the surface. The surface displacements in layered models with only univiscous, Maxwell viscoelastic rheologies always exhibit one exponential-like phase of relaxation. Layered models containing biviscous rheologies may produce multiple phases of relaxation, where the distinctness of the phases depends on the geometry and the contrast in strengths between the layers. Post-seismic displacements in models with biviscous rheologies can often be described by logarithmic functions

    Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Get PDF
    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program

    Small-scale convection beneath the transverse ranges, California: Implications for interpretation of gravity anomalies

    Get PDF
    Tomographic inversion of upper mantle P wave velocity heterogeneities beneath southern California shows two prominent features: an east-west trending curtain of high velocity material (up to 3% fast) in the upper 250 km beneath the Transverse Ranges and a region of low velocity material (up to 4% slow) in the 100 km beneath the Salton Trough. These seismic velocity anomalies were interpreted as due to small scale convection in the mantle. Using this hypothesis and assuming that temperature and density anomalies are linearly related to seismic velocity anomalies through standard coefficients of proportionality, leads to inferred variations of approx. + or - 300 C and approx. + or - 0.03 g/cc

    Traffic model for advanced satellite designs and experiments for ISDN services

    Get PDF
    The data base structure and fields for categorizing and storing Integrated Services Digital Network (ISDN) user characteristics is outlined. This traffic model data base will be used to exercise models of the ISDN Advanced Communication Satellite to determine design parameters and performance for the NASA Satellite Communications Applications Research (SCAR) Program
    • …
    corecore