3,574 research outputs found

    Outer jet X-ray and radio emission in R Aquarii: 1999.8 to 2004.0

    Full text link
    Chandra and VLA observations of the symbiotic star R Aqr in 2004 reveal significant changes over the three to four year interval between these observations and previous observations taken with the VLA in 1999 and with Chandra in 2000. This paper reports on the evolution of the outer thermal X-ray lobe-jets and radio jets. The emission from the outer X-ray lobe-jets lies farther away from the central binary than the outer radio jets, and comes from material interpreted as being shock heated to ~10^6 K, a likely result of collision between high speed material ejected from the central binary and regions of enhanced gas density. Between 2000 and 2004, the Northeast (NE) outer X-ray lobe-jet moved out away from the central binary, with an apparent projected motion of ~580 km s^-1. The Southwest (SW) outer X-ray lobe-jet almost disappeared between 2000 and 2004, presumably due to adiabatic expansion and cooling. The NE radio bright spot also moved away from the central binary between 2000 and 2004, but with a smaller apparent velocity than of the NE X-ray bright spot. The SW outer lobe-jet was not detected in the radio in either 1999 or 2004. The density and mass of the X-ray emitting material is estimated. Cooling times, shock speeds, pressure and confinement are discussed.Comment: 23 pages, 8 figure

    Taming the Invisible Monster: System Parameter Constraints for Epsilon Aurigae from the Far-Ultraviolet to the Mid-Infrared

    Get PDF
    We have assembled new Spitzer Space Telescope Infrared Array Camera observations of the mysterious binary star Epsilon Aurigae, along with archival far-ultraviolet to mid-infrared data, to form an unprecedented spectral energy distribution spanning three orders of magnitude in wavelength from 0.1 microns to 100 microns. The observed spectral energy distribution can be reproduced using a three component model consisting of a 2.2+0.9/-0.8 Msun F type post-asymptotic giant branch star, and a 5.9+/-0.8 Msun B5+/-1 type main sequence star that is surrounded by a geometrically thick, but partially transparent, disk of gas and dust. At the nominal HIPPARCOS parallax distance of 625 pc, the model normalization yields a radius of 135+/-5 Rsun for the F star, consistent with published interferometric observations. The dusty disk is constrained to be viewed at an inclination of i > 87 deg, and has effective temperature of 550+/-50 K with an outer radius of 3.8 AU and a thickness of 0.95 AU. The dust content of the disk must be largely confined to grains larger than ~10 microns in order to produce the observed gray optical-infrared eclipses and the lack of broad dust emission features in the archival Spitzer mid-infrared spectra. The total mass of the disk, even considering a potential gaseous contribution in addition to the dust that produces the observed infrared excess, is << 1 Msun. We discuss evolutionary scenarios for this system that could lead to the current status of the stellar components and suggests possibilities for its future evolution, as well as potential observational tests of our model.Comment: 13 pages, 3 figures. Accepted for publication in The Astrophysical Journal

    The Intrinsic Absorber in QSO 2359-1241: Keck and HST Observations

    Full text link
    We present detailed analyses of the absorption spectrum seen in QSO 2359-1241 (NVSS J235953-124148). Keck HIRES data reveal absorption from twenty transitions arising from: He I, Mg I, Mg II, Ca II, and Fe II. HST data show broad absorption lines (BALs) from Al III 1857, C IV 1549, Si IV 1397, and N V 1240. Absorption from excited Fe II states constrains the temperature of the absorber to 2000K < T < 10,000K and puts a lower limit of 10^5 cm^{-3} on the electron number density. Saturation diagnostics show that the real column densities of He I and Fe II can be determined, allowing to derive meaningful constraints on the ionization equilibrium and abundances in the flow. The ionization parameter is constrained by the iron, helium and magnesium data to -3.0 < log(U) < -2.5 and the observed column densities can be reproduced without assuming departure from solar abundances. From comparison of the He I and Fe II absorption features we infer that the outflow seen in QSO 2359-1241 is not shielded by a hydrogen ionization front and therefore that the existence of low-ionization species in the outflow (e.g., Mg II, Al III, Fe II) does not necessitate the existence of such a front. We find that the velocity width of the absorption systematically increases as a function of ionization and to a lesser extent with abundance. Complementary analyses of the radio and polarization properties of the object are discussed in a companion paper (Brotherton et al. 2000).Comment: 30 pages, 9 figures, in press with the Ap

    On Languages Accepted by P/T Systems Composed of joins

    Full text link
    Recently, some studies linked the computational power of abstract computing systems based on multiset rewriting to models of Petri nets and the computation power of these nets to their topology. In turn, the computational power of these abstract computing devices can be understood by just looking at their topology, that is, information flow. Here we continue this line of research introducing J languages and proving that they can be accepted by place/transition systems whose underlying net is composed only of joins. Moreover, we investigate how J languages relate to other families of formal languages. In particular, we show that every J language can be accepted by a log n space-bounded non-deterministic Turing machine with a one-way read-only input. We also show that every J language has a semilinear Parikh map and that J languages and context-free languages (CFLs) are incomparable

    The White Dwarf in EM Cygni: Beyond The Veil

    Full text link
    We present a spectral analysis of the FUSE spectra of EM Cygni, a Z Cam DN system. The FUSE spectrum, obtained in quiescence, consists of 4 individual exposures (orbits): two exposures, at orbital phases phi ~ 0.65 and phi ~ 0.90, have a lower flux; and two exposures, at orbital phases phi =0.15 and 0.45, have a relatively higher flux. The change of flux level as a function of the orbital phase is consistent with the stream material (flowing over and below the disk from the hot spot region to smaller radii) partially masking the white dwarf. We carry out a spectral analysis of the FUSE data, obtained at phase 0.45 (when the flux is maximual, using the codes TLUSTY and SYNSPEC. Using a single white dwarf spectral component, we obtain a white dwarf temperature of 40,000K, rotating at 100km/s. The white dwarf, or conceivably, the material overflowing the disk rim, shows suprasolar abundances of silicon, sulphur and possibly nitrogen. Using a white dwarf+disk composite model, we obtain that the white dwarf temperature could be even as high as 50,000K, contributing more than 90% of the FUV flux, and the disk contributing less than 10% must have a mass accretion rate reaching 1.E-10 Msun/yr.In both cases, however, we obtain that the white dwarf temperature is much higher than previously estimated.Comment: accepted for publication in ApJ, 3 Tables, 12 Figures (including color figures), 33 pages in present format (possibly 10 pages in ApJ format

    HV 11423: The Coolest Supergiant in the SMC

    Get PDF
    We call attention to the fact that one of the brightest red supergiants in the SMC has recently changed its spectral type from K0-1 I (December 2004) to M4 I (December 2005) and back to K0-1 I (September 2006). An archival spectrum from the Very Large Telescope reveals that the star was even cooler (M4.5-M5 I) in December 2001. By contrast, the star was observed to be an M0 I in both October 1978 and October 1979. The M4-5 I spectral types is by far the latest type seen for an SMC supergiant, and its temperature in that state places it well beyond the Hayashi limit into a region of the H-R diagram where the star should not be in hydrostatic equilibrium. The star is variable by nearly 2 mag in V, but essentially constant in K. Our modeling of its spectral energy distribution shows that the visual extinction has varied during this time, but that the star has remained essentially constant in bolometric luminosity. We suggest that the star is currently undergoing a period of intense instability, with its effective temperature changing from 4300 K to 3300 K on the time-scale of months. It has one of the highest 12-micron fluxes of any RSG in the SMC, and we suggest that the variability at V is due primarily to changes in effective temperature, and secondly, due to changes in the local extinction due to creation and dissipation of circumstellar dust. We speculate that the star may be nearing the end of its life.Comment: Accepted by the Astrophysical Journa
    corecore