1,489 research outputs found

    Approximating the monomer-dimer constants through matrix permanent

    Full text link
    The monomer-dimer model is fundamental in statistical mechanics. However, it is #P-complete in computation, even for two dimensional problems. A formulation in matrix permanent for the partition function of the monomer-dimer model is proposed in this paper, by transforming the number of all matchings of a bipartite graph into the number of perfect matchings of an extended bipartite graph, which can be given by a matrix permanent. Sequential importance sampling algorithm is applied to compute the permanents. For two-dimensional lattice with periodic condition, we obtain 0.6627±0.0002 0.6627\pm0.0002, where the exact value is h2=0.662798972834h_2=0.662798972834. For three-dimensional lattice with periodic condition, our numerical result is 0.7847±0.0014 0.7847\pm0.0014, {which agrees with the best known bound 0.7653h30.78620.7653 \leq h_3 \leq 0.7862.}Comment: 6 pages, 2 figure

    Shear-induced reaction-limited aggregation kinetics of Brownian particles at arbitrary concentrations

    Full text link
    The aggregation of interacting Brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the range considered. By generalizing Kramers' rate theory to the presence of collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration

    Poly(ADP-ribose) polymerase-1 activity facilitates the dissociation of nuclear proteins from platinum-modified DNA

    Get PDF
    The affinity of the poly(ADP-ribose) polymerase-1 (PARP-1) for platinum-damaged DNA was first discovered during photo-cross-linking experiments using the photoactive compound Pt-BP6 [J. Am. Chem. Soc. 2004, 126, 6536–6537], an analogue of the anticancer drug cis-diamminedichloroplatinum(II), cisplatin. Although PARP inhibitors sensitize cancer cells to cisplatin, there are conflicting reports in the literature about their efficacy. In order to improve our understanding of the mechanism by which PARP inhibition might potentiate the cell-killing ability of cisplatin, and to shed light on the source of the discrepancy among different laboratories, we have in the present study probed the influence of three PARP inhibitors in four types of cancer cells, cervical (HeLa), testicular (NTera2), pancreatic (BxPC3), and osteosarcoma (U2OS), on the results of Pt-BP6 photo-cross-linking experiments and cytotoxicity assays. We find that the activity of PARP proteins following exposure to platinum-modified DNA results in the dissociation of DNA-bound proteins. PARP inhibitors were able to sensitize some, but not all, of the cell lines to cisplatin. This cell line-dependence and the potential consequences of PARP-initiated protein removal from platinum–DNA lesions are discussed. Control experiments revealed that NTera2 cells are especially sensitive to PARP inhibition

    Universal scaling behavior at the upper critical dimension of non-equilibrium continuous phase transitions

    Full text link
    In this work we analyze the universal scaling functions and the critical exponents at the upper critical dimension of a continuous phase transition. The consideration of the universal scaling behavior yields a decisive check of the value of the upper critical dimension. We apply our method to a non-equilibrium continuous phase transition. But focusing on the equation of state of the phase transition it is easy to extend our analysis to all equilibrium and non-equilibrium phase transitions observed numerically or experimentally.Comment: 4 pages, 3 figure

    An investigation of standard thermodynamic quantities as determined via models of nuclear multifragmentation

    Get PDF
    Both simple and sophisticated models are frequently used in an attempt to understand how real nuclei breakup when subjected to large excitation energies, a process known as nuclear multifragmentation. Many of these models assume equilibriumthermodynamics and produce results often interpreted as evidence of a phase transition. This work examines one class of models and employs standard thermodynamical procedure to explore the possible existence and nature of a phase transition. The role of various terms, e.g. Coulomb and surface energy, is discussed.Comment: 19 two-column format pages with 24 figure

    Ultrasonic field mapping through a multimode optical fibre

    Get PDF
    Miniaturising ultrasonic field mapping systems could lead to novel endoscopes capable of photoacoustic tomography and other techniques. However, developing high-resolution arrays of sensitive, sub-millimetre scale ultrasound sensors presents a challenge for traditional piezoelectric transducers. To address this challenge, we conceived an ultrasonic detection concept in which an optical ultrasonic sensor array is read out using a laser beam scanned through a 0.24 mm diameter multimode optical fibre using optical wavefront shaping. We demonstrate this system enables ultrasonic field mapping with >2500 measurement points, paving the way to developing miniaturised photoacoustic endoscopes and other ultrasonic systems based on the presented concept

    Childhood febrile illness and the risk of myopia in UK Biobank participants

    Get PDF

    A Genome-Wide Association Study for Susceptibility to Visual Experience-Induced Myopia

    Get PDF
    PURPOSE. The rapid rise in prevalence over recent decades and high heritability of myopia suggest a role for gene-environment (G X E) interactions in myopia susceptibility. Few such G X E interactions have been discovered to date. We aimed to test the hypothesis that genetic analysis of susceptibility to visual experience-induced myopia in an animal model would identify novel G X E interaction loci. METHODS. Chicks aged 7 days (n = 987) were monocularly deprived of form vision for 4 days. A genome-wide association study (GWAS) was carried out in the 20% of chicks most susceptible and least susceptible to form deprivation (n = 380). There were 304,963 genetic markers tested for association with the degree of induced axial elongation in treated versus control eyes (A-scan ultrasonography). A GWAS candidate region was examined in the following three human cohorts: CREAM consortium (n = 44,192), UK Biobank (n = 95,505), and Avon Longitudinal Study of Parents and Children (ALSPAC; n = 4989). RESULTS. A locus encompassing the genes PIK3CG and PRKAR2B was genome-wide significantly associated with myopia susceptibility in chicks (lead variant rs317386235, P = 9.54e-08). In CREAM and UK Biobank GWAS datasets, PIK3CG and PRKAR2B were enriched for strongly-associated markers (meta-analysis lead variant rs117909394, P = 1.7e-07). In ALSPAC participants, rs117909394 had an age-dependent association with refractive error (-0.22 diopters [D] change over 8 years, P = 5.2e-04) and nearby variant rs17153745 showed evidence of a G X E interaction with time spent reading (effect size -0.23 D, P = 0.022). CONCLUSIONS. This work identified the PIK3CG-PRKAR2B locus as a mediator of susceptibility to visually induced myopia in chicks and suggests a role for this locus in conferring susceptibility to myopia in human cohorts.</p

    The liquid to vapor phase transition in excited nuclei

    Get PDF
    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid- vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.Comment: four pages, four figures, first two in color (corrected typo in Ref. [26], corrected error in Fig. 4

    Association between birth weight and refractive error in adulthood:A Mendelian randomisation study

    Get PDF
    Background Pathological myopia is one of the leading causes of blindness globally. Lower birth weight (BW) within the normal range has been reported to increase the risk of myopia, although findings conflict. We sought to estimate the causal effect of BW on refractive error using Mendelian randomisation (MR), under the assumption of a linear relationship. Methods Genetic variants associated with BW were identified from meta-analysis of a genome-wide association study (GWAS) for self-reported BW in 162 039 UK Biobank participants and a published Early Growth Genetics (EGG) consortium GWAS (n=26 836). We performed a one-sample MR analysis in 39 658 unrelated, adult UK Biobank participants (independent of the GWAS sample) using an allele score for BW as instrumental variable. A two-sample MR sensitivity analysis and conventional ordinary least squares (OLS) regression analyses were also undertaken. Results In OLS analysis, BW showed a small, positive association with refractive error: +0.04 D per SD increase in BW (95% CI 0.02 to 0.07; p=0.002). The one-sample MR-estimated causal effect of BW on refractive error was higher, at +0.28 D per SD increase in BW (95% CI 0.05 to 0.52, p=0.02). A two-sample MR analysis provided similar causal effect estimates, with minimal evidence of directional pleiotropy. Conclusions Our study suggests lower BW within the normal range is causally associated with a more myopic refractive error. However, the impact of the causal effect was modest (range 1.00 D covering approximately 95% of the population)
    corecore