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Synopsis 

A Mendelian randomisation analysis to estimate the causal effect of birth weight on refractive error 

in adulthood suggested that each 1 standard deviation reduction in birth weight caused a -0.28 D 

more negative refractive error. 

 

 

Abstract 

Background. Pathological myopia is one of the leading causes of blindness globally. Lower birth 

weight (BW) within the normal range has been reported to increase the risk of myopia, although 

findings conflict. We sought to estimate the causal effect of BW on refractive error using Mendelian 

randomization, under the assumption of a linear relationship.  

Methods. Genetic variants associated with BW were identified from meta-analysis of a genome-

wide association study (GWAS) for self-reported BW in 162,039 UK Biobank participants and a 

published EGG consortium GWAS (n=26,836). We performed a 1-sample Mendelian randomization 

(MR) analysis in 39,658 unrelated, adult UK Biobank participants (independent of the GWAS sample) 

using an allele score for BW as instrumental variable. A 2-sample MR sensitivity analysis and 

conventional ordinary least squares (OLS) regression analyses were also undertaken. 

Results. In OLS analysis, BW showed a small, positive association with refractive error: +0.04D per 

standard deviation (SD) increase in BW (95% CI: 0.02 to 0.07; p=0.002). The 1-sample MR-estimated 

causal effect of BW on refractive error was higher, at +0.28D per SD increase in BW (95% CI: 0.05 to 

0.52, p=0.02). A 2-sample MR analysis provided similar causal effect estimates, with minimal 

evidence of directional pleiotropy.  

Conclusions. Our study suggests lower birth weight within the normal range is causally associated 

with a more myopic refractive error. However, the impact of the causal effect was modest (range 

1.00D covering approximately 95% of the population). 
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Introduction 

Myopia is a common eye disorder that increases the risk of maculopathy, glaucoma, cataract, and 

retinal detachment [1,2]. Despite numerous epidemiologic and genetic studies, the risk factors and 

mechanisms underlying myopia development are still not fully understood [3-5].  

 

Myopia is more common in children with extremely low birth weight (BW), either with or without 

retinopathy of prematurity [6,7], although an increased prevalence of hyperopia and astigmatism 

has also been reported [8,9]. The ocular structure primarily responsible for causing myopia in 

individuals with extremely low BW is unclear, since both corneal curvature and axial length have 

been reported to differ in preterm vs. full-term-born infants, and there is evidence suggesting some 

of these differences may resolve during childhood [10-12]. However, few epidemiological studies 

have assessed the relationship between refractive error and BW within the normal range, either for 

adult or child samples. In a cohort of infants from Singapore [13] a trend towards a negative 

association of BW and refraction was observed, i.e. a more hyperopic refractive error with lower 

BW. In contrast, a study of 12-13 year-old children from Northern Ireland [14] reported a positive 

association. In both studies, statistical support for the association was weak. No association between 

BW and refractive error was found in 12 to 15 year-old adolescent participants in the US National 

Health and Nutrition Examination Survey (NHANES), although BW was associated with corneal 

curvature [11]. In adult participants from the population-based 1958 British Birth Cohort [15], 

myopia was associated with lower BW for gestational age (OR=0.90, P<0.05) and in the population-

based Gutenberg Health Study [16], refractive error was -0.017 D (95% CI -0.011 to -0.023; P<0.001) 

more myopic per standard deviation reduction in BW. 

 

Previous investigations of the relationship between BW and refractive error have been restricted to 

observational study designs. Observational studies are susceptible to confounding, and therefore 

offer very limited potential for drawing causal inferences [17]. The aim of the current study was to 

test for a causal relationship between BW within the normal range and refractive error in adulthood. 

For this purpose, we used a Mendelian randomization (MR) study design. In MR, genetic variants 

associated with an exposure (risk factor) are used as ‘instrumental variables’ to provide effect 

estimates free from bias due to reverse causality and that are less prone to bias from unmeasured 

confounders than conventional observation studies [8,18]. The MR approach has been likened to a 

randomized controlled trial [19]. Three assumptions are necessary in order for a specific genetic 

variant to be used as an instrumental variable in an MR analysis (Figure 1): i) the genetic variant 

must be associated with the level of the exposure variable; ii) the genetic variant must not be 
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associated with any confounders of the exposure-outcome relationship; and, iii) the genetic variant 

must be associated with the outcome only via the exposure [20,21]. Newer variations of MR allow 

the relaxation of assumptions (ii) and (iii) to some extent [22].  

 

Methods 

 

UK Biobank 

UK Biobank is a longitudinal study of approximately 500,000 participants aged 37-73 years, recruited 

between 2006 and 2010 [23]. Ethical approval was obtained from the National Health Research 

Ethics Service (Ref 11/NW/0382) and all participants provided written informed consent. Genotype 

data from the UK Biobank July 2017 full release were available for 488,377 participants. Data for BW 

were available for 279, 971 participants, who recalled their BW at the baseline and/or follow-up 

assessments. BW data were Z-transformed: (BW value – mean BW)/ standard deviation (SD) of BW. 

A flow diagram outlining the selection of UK Biobank participants for the GWAS and MR analyses is 

presented in Figure 2. The validity of self-reported BW was previously assessed by Tyrrell et al. [24], 

who reported it to be associated with non-singleton pregnancy, female sex, maternal smoking at the 

time of pregnancy, earlier year of birth, and socioeconomic status. All of these associations were in 

the expected directions. 

 

Approximately 23% of UK Biobank participants underwent an ophthalmic assessment, which 

included non-cycloplegic autorefraction/keratometry (Tomey RC5000; Tomey Gmbh Europe, 

Germany). Up to 10 repeat measurements were taken. Mean Spherical Equivalent (MSE) refractive 

error was calculated over repeat measurements for each eye separately, after excluding readings 

flagged as being unreliable: MSE = Sphere + (0.5*Cylinder). The average MSE (avMSE) of the 2 eyes 

was used as the participant’s refractive error in the statistical analyses. 

 

A set of well-imputed genetic variants (with IMPUTE4 [25] INFO metric > 0.9, minor allele frequency 

(MAF) > 0.005, missing rate  0.01, and an ‘rs’ variant ID prefix that were LD-pruned using the --

indep-pairwise 50 5 0.1 command in in PLINK 2.0 [26]) was used to create a genetic relationship 

matrix (GRM). From the set of n=409,728 White British ancestry individuals identified by Bycroft et 

al. [25] a group of (essentially) unrelated individuals was selected using the PLINK 1.9 [26] --rel-cutoff 

0.025 command in conjunction with the GRM. A total of 338,256 unrelated White British ancestry 

individuals was identified. For these participants, the mean and SD of the each of the first 20 

Principal Components (PCs) of genetic data were calculated (using the PCs obtained by Bycroft et al. 
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[25]). Individuals from the full cohort who were within ±10 SD of the mean for each of the first 20 

PCs were retained (n=446,678). We excluded a further 1,821 participants with self-reported non-

white ethnicity and those with autosomal heterozygosity more than 4 SD from the mean. Individuals 

with valid autorefraction data, no history of eye surgery and who had not withdrawn consent were 

utilized as the sample for a GWAS for refractive error (n=95,504; see below). Following the selection 

criteria adopted by Horikoshi et al. [27] from the remaining 347,708 participants we excluded 

participants who had withdrawn consent, those with BW outside the range of 2.5-4.5kg, those from 

multiple births (e.g. twins) and those who reported a difference in BW > 0.5kg between the baseline 

and follow-up assessments. This resulted in a total sample of 162,039 participants for inclusion in a 

GWAS for BW (Figure 2). 

 

For the GWAS for refractive error we excluded participants from downstream analyses if they: (i) 

self-reported a history of laser refractive surgery, cataract or corneal graft surgery, or any type of 

eye surgery within the last 4 weeks before the assessment; (ii) self-reported any eye trauma that led 

to sight loss; (iii) self-reported cataract or retinal detachment; (iv) had a hospital record of ocular 

surgery. This resulted in 95,692 participants for further analysis. 

 

A subgroup of unrelated UK Biobank participants (n=39,658) with both autorefraction and BW data 

available was used for the 1-sample MR analysis and the OLS analysis (Figure 2). 

 

EGG consortium GWAS meta-analysis for birth weight 

Summary statistics for a GWAS meta-analysis for BW were downloaded from the Early Growth 

Genetics (EGG) consortium website www.egg-consortium.org [28]. The EGG consortium meta-

analysis comprised of 18 European population-based studies (n=26,836). 

 

CREAM consortium GWAS meta-analysis for refractive error 

Summary statistics for a GWAS meta-analysis for refractive error were provided by the CREAM 

consortium. The CREAM meta-analysis was based on 29 studies of European ancestry (n=44,192 in 

total), most of which were population based. Spherical equivalent averaged between the two eyes 

was used as the refractive error phenotype. The 29 CREAM studies did not adjust for BW when 

performing the GWAS analyses for refractive error. 

 

Ordinary Least Squares (OLS) Regression 

http://www.egg-consortium.org/
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To examine the observational association between BW and refractive error we performed a linear 

regression analysis in the sample of UK Biobank participants with information available for both 

refractive error and BW (n=39,658), adjusting for age and sex. BW was coded as a Z-score, i.e. 1 SD 

of BW was used as the unit of measurement. 

 

GWAS for birth weight and for refractive error in UK Biobank participants 

Single marker association tests for BW (coded as a Z-score) and for refractive error (coded in 

Dioptres) were carried out genome-wide in n=162,039 and n=95,504 individuals, respectively, from 

UK Biobank, using BOLT-LMM [29]. We included 10.4 million genetic markers present on the HRC 

reference panel [25] with MAF 0.05 and IMPUTE4 INFO metric >0.9 and per-marker missing rate 

<0.015 and per-individual missing genotype rate <0.025. Age, gender, genotyping array (coded as 0 

or 1 for the UK BiLEVE or UK Biobank Axiom, respectively) and the first 10 PCs were included as 

covariates. The genetic relationship matrix for the BOLT-LMM analysis was created as described 

above. The GWAS summary statistics were filtered to remove markers with a p<0.01 for a test of 

Hardy-Weinberg equilibrium. 

 

Meta-analysis of GWAS summary statistics 

Two meta-analyses were conducted. Firstly, a meta-analysis of the two sets of BW GWAS summary 

statistics (n=162,039 individuals from UK Biobank and n=26,836 individuals from the EGG 

Consortium) and secondly a meta-analysis of the two sets of refractive error GWAS summary 

statistics (n=95,504 individuals from UK Biobank and n=44,192 individuals from the CREAM 

Consortium). We used a fixed effects, inverse variance-weighted meta-analysis model in METAL [30]. 

 

An allele score for birth weight 

The BW GWAS meta-analysis identified 75 lead SNPs associated with BW at P<5.0e-08 that were 

separated by at least 500 kb and that had pairwise linkage disequilibrium (LD) r² < 0.2. Two of these 

SNPs were not present in the CREAM refractive error GWAS summary statistics, leaving 73 SNPs for 

deriving an allele score. These allele scores were calculated for UK Biobank individuals using the 

PLINK 1.9 ‘--score’ command, with weighting based on the beta-coefficient quantifying the degree of 

association with BW. 

 

The variance in BW explained by the allele score was assessed in the sample of unrelated UK 

Biobank participants with information available for both refractive error and BW (n=39,658; note 

that there was no overlap between this sample of 39,658 participants and the UK Biobank sample 
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used for the BW GWAS meta-analysis; see Figure 2). A baseline regression model was fit, with BW (Z-

scores) as the dependent variable and age, sex, genotyping array (UK BiLEVE array or UK Biobank 

Axiom array) and the first 10 PCs as predictors. A full model was fit as for the baseline model, with 

allele score included as an additional predictor. The variance in BW explained by the allele score was 

calculated as the increase in the adjusted R² of the full vs. baseline model. 

 

Mendelian randomization 

We performed a 1-sample Mendelian randomization analysis in unrelated UK Biobank participants 

using the allele score for BW as the instrumental variable and a Limited Information Maximum 

Likelihood (LIML) model (ivmodel R package). F-statistics from the first stage of a two-step least 

squares (2SLS) analysis (ivreg function from R package AER) were used to assess the strength of the 

instrumental variable [31]. 

 

As an allele score-based MR analysis can be biased by unbalanced (directional) pleiotropy, we 

performed MR-Egger and weighted-median (2-sample) MR sensitivity analyses [20,21]. The same set 

of 73 genetic variants used in the allele score analyses described above were used as instrumental 

variables. For the analysis results presented in Table 1, regression coefficients and standard errors 

for the association of these 73 genetic variants with refractive error were obtained from a meta-

analysis of GWAS for refractive error in UK Biobank participants and the CREAM Consortium GWAS.  

 

Sample overlap 

The EGG and CREAM genetic consortia samples were partially overlapping (e.g. the 1958 British Birth 

Cohort, EPIC, ERF and ORCADES studies were common between the two datasets). We estimated 

the maximum possible overlap, was 4,813 individuals, i.e. for example, if the number of ORCADES 

participants in EGG was X and the number of ORCADES participants in CREAM was Y, then the 

maximum overlap would be min(X,Y). It was also possible that some participants in the UK-based 

EGG or UK-based CREAM studies were also enrolled in the UK Biobank study. For the MR analysis 

using UK Biobank + EGG summary statistics for stage 1 and CREAM + the separate group of UK 

Biobank for stage 2, we estimated the maximum possible overlap to be 11,685 individuals, or 8% of 

the stage 2 sample. Thus, the potential for weak instrument bias due to this overlap was limited [32]. 

 

 

Results 
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GWAS meta-analysis and allele score for birth weight 

The UK Biobank sample selected for the GWAS for self-reported BW was restricted to individuals 

with self-reported BW within the range 2.5-4.5 kg. A comparison of participants included vs. 

excluded based on this criterion identified that the excluded participants were more often older, 

male, and from more socially deprived areas (all p<1.0e-73; Supplementary Tables S1-S3; 

Supplementary Figure S1). The excluded participants were also less likely to have undergone the 

ophthalmic assessment, and had a more hyperopic refractive error: the median (IQR) refractive error 

was +0.09 D (-1.28 to 1.05) vs. +0.23 D (-1.12 to 1.27) for included vs. excluded participants (p=7.3e-

49). The final sample size for the GWAS was 162,309 (Figure 2).  

 

The GWAS identified 63 SNPs independently associated with self-reported BW at genome-wide 

significance, p<5.0e-08 (Supplementary Table S4). A meta-analysis of the UK Biobank (n=162,309) 

and EGG consortium (n=26,836) BW GWAS summary statistics identified 75 genetic variants 

independently associated with BW (Supplementary Table S5). Two of these SNPs (rs1530624 and 

rs1058026) were not available in the CREAM meta-analysis for refractive error and hence were 

excluded. The remaining 73 genetic variants were used to calculate an allele score for BW. The allele 

score explained 1.2% of the variance in BW in an independent sample of 39,658 UK Biobank 

participants (p<2.2e-16). 

 

Observational and causal relationship between birth weight and refractive error  

The observational association between refractive error and BW was assessed using OLS regression in 

39,658 unrelated UK Biobank participants of European ancestry, after adjusting for age and sex. Each 

1 SD increase in BW was associated with a +0.04 D increase in refractive error (95% CI 0.02 to 0.07, 

p=0.002), suggesting that lower BW was a risk factor for myopia and higher BW a risk factor for 

hypermetropia. 

 

In the same sample of 39,658 UK Biobank participants with information available for both BW and 

refractive error, a 1-sample Mendelian randomization analysis using the allele score for BW as an 

instrumental variable estimated the causal effect of BW on refractive error as +0.28 D per 1 SD 

increase in BW (95% CI 0.05 to 0.52, p=0.02). The F-statistic from the first stage regression of a 2SLS 

analysis was 496.74, confirming that the allele score was not a ‘weak instrument’ [33]. 

 

A 2-sample MR sensitivity analysis was carried out using the largest datasets available: meta-

analysed data for BW in 188,039 participants from UK Biobank and the EGG consortium; and meta-



Page 9 
 

analysed data for refractive error in 139,696 participants from UK Biobank and the CREAM 

consortium. The 73 SNPs independently associated with BW were used as instrumental variables. An 

MR-Egger sensitivity analysis, designed to test for directional pleiotropy, yielded an MR-Egger 

intercept estimate of 0.00 D, suggesting an absence of directional pleiotropy (Table 1; Figure 3). A 

weighted median-based MR causal effect estimate, which remains valid even a proportion of the 

genetic variants do not meet the assumptions necessary for a valid instrumental variable, yielded an 

MR effect estimate similar to that from the allele score-based MR analysis (Table 1): +0.18 D per 1 

SD increase in BW (95% CI 0.02 to 0.35, p=0.03). 

 

Discussion 

In this Mendelian randomization study, we estimated the causal effect of BW within the normal 

range on refractive error as approximately +0.28 D per 1 SD increase in BW. The MR-based estimate 

of the causal effect of BW was higher than the observational analysis-based estimate (Durbin-Wu-

Hausman endogeneity test p=0.04) suggesting bias in the observational analysis or the presence of 

gene-environment interaction. 

 

The likely reason for the difference between the causal effect estimate from the MR analysis and 

that estimated from the observational estimate is confounding (typically, observational estimates 

are more severely affected by confounding bias than are MR estimates). Such confounding may arise 

from the complex interrelationships between BW and other traits, both of the mother and the 

proband (Figure 4). For example, an inverted U-shaped relationship between maternal age and BW 

has been reported [34], and maternal age is negatively correlated with refractive error of the child 

[33]. In addition, birth order is associated with BW [35] and refractive error [36] (specifically, first-

born offspring have a higher risk of myopia development than their siblings). Furthermore, higher 

maternal education is associated with a reduced risk of low BW in offspring [37]. Similarly, a 

correlation between refractive error in children and their mother’s level of educational attainment 

has been reported [38], and the level of maternal education is related to maternal age. 

 

Strengths of this study were that the allele score used as an instrumental variable in the primary MR 

analysis was strongly associated with the exposure (F=496.74), and that sensitivity analyses were 

carried out to check the robustness of the findings to departures from the assumptions required in 

MR. We integrated GWAS summary statistics from existing large GWAS datasets and UK Biobank, 

which provided sufficient statistical power to detect and estimate the causal effect precisely. 
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One limitation of our study is that it was restricted to participants of European ancestry, while the 

prevalence of myopia is greater in East and South-East Asian countries compared to Europe. 

Furthermore, the UK Biobank cohort is not fully representative of the UK population [23] (a 

phenomenon potentially exacerbated by our exclusion of participants with self-reported BW outside 

the 2.5 - 4.5 kg range). The causal effect estimate and the observational association between BW 

and refractive error may differ across population groups or geographic locations as a result of 

genetic or environmental influences. Secondly, despite the evidence against departure from the MR 

assumptions, the possibility of pleiotropic effects cannot be ruled out since the biological role of the 

vast majority of the genetic variants we used as instrumental variables is unknown. For instance, it is 

plausible that a genetic variant identified in a GWAS for BW has a causal pathway that acts via the 

mother’s level of educational attainment, i.e. a variant associated with higher educational 

attainment would be expected to show a positive association with BW. Without further knowledge 

of either the maternal genotype or maternal phenotype of the participants in an MR study, it is not 

possible to account for phenotypic effects mediated by the maternal genotype and environment 

separately from those of the alleles inherited by probands [39-41]. Thirdly, a further limitation 

related to that already discussed above, is that Mendelian randomisation does not elucidate the 

causal pathway linking an exposure to an outcome. Indeed such causal pathways could potentially 

be unanticipated and indirect; for example, the relationship between birth order and myopia has 

been suggested to be mediated at least in part by greater parental investment in the education of 

first-born children, coupled with a causal relationship between education and myopia [42,43]. 

Fourthly, the data analysed in the GWAS for BW were obtained by self-report, which may be 

inaccurate. Moreover, we excluded participants with a self-reported BW outside the normal range 

(and the participants excluded based on this criterion were not a random sample of the full UK 

Biobank cohort). Together, these sources of error may have led to GWAS variant regression 

coefficients being under or over-estimated. These errors in turn may have contributed to the 

imprecision in the final causal effect estimate. Fifthly, information about gestational age was not 

available for UK Biobank participants, therefore self-reported BW in some individuals may have been 

small or large for their gestational age. However, an analysis by Horikoshi et al. [27] found no 

evidence for higher-than-expected heterogeneity in GWAS variant regression coefficients estimated 

in samples with vs. without the inclusion of gestational age as a covariate. This suggests that lack of 

information regarding gestational age did not introduce a systematic bias in the current study. 

 

Conclusion 
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A Mendelian randomization analysis supported the hypothesis that BW within the normal range 

plays a causal role in refractive error development. A lower BW caused a modestly increased risk of 

myopia. The estimated causal effect of BW on refractive error was greater than that assessed from a 

conventional OLS analysis in the same sample, suggesting that confounding factors may buffer 

against the causal effect of BW on myopia. 
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Table 1. Two-sample Mendelian randomization analysis for the role of birth weight in causing 

susceptibility to refractive error. The causal effect estimate is in units of Dioptres per 1 SD increase 

in BW. Summary statistics for stage 1 were from a meta-analysis of GWAS for BW in UK Biobank and 

EGG (n=188,039). Summary statistics for stage 2 were from a meta-analysis of GWAS for refractive 

error in UK Biobank and the CREAM (n=139,884). 

Method Estimate 95% CI  P-value 

Simple median 0.15 -0.02 0.31 0.076 

Weighted median 0.18 0.02 0.35 0.029 

Penalized weighted median 0.20 0.03 0.36 0.020 

     

IVW 0.15 0.00 0.30 0.044 

Penalized IVW 0.21 0.08 0.33 0.002 

Robust IVW 0.17 0.02 0.32 0.025 

Penalized robust IVW 0.21 0.07 0.34 0.002 

     

MR-Egger 0.18 -0.41 0.78 0.545 

(intercept) 0.00 -0.02 0.01 0.918 

Penalized MR-Egger 0.09 -0.42 0.61 0.720 

(intercept) 0.00 -0.01 0.02 0.652 

Robust MR-Egger 0.15 -0.36 0.66 0.564 

(intercept) 0.00 -0.01 0.01 0.936 

Penalized robust MR-Egger 0.08 -0.31 0.47 0.684 

(intercept) 0.00 -0.01 0.01 0.557 
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Figure 1. Mendelian Randomization assumptions. 
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Figure 2. Selection of UK Biobank participants for GWAS for birth weight and for refractive error. 

Box outline colour corresponds to: black – GWAS for refractive error sample; red – OLS and MR 

sample; green – GWAS for birth weight sample. (Note that none of 95,504 participants in the 

refractive error GWAS sample had withdrawn consent to participate). 
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Figure 3. Comparison of estimated effect sizes for association with refractive error for 73 

instrumental variables associated with birth weight. Error bars correspond to 95% confidence 

intervals. The solid green line and the dotted red line correspond to MR-Egger and IVW estimates 

respectively. 
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Figure 4. Interrelationships between birth weight and other traits. Solid arrows correspond to the 

direction of known association; dashed arrow corresponds to the tested association. 

 

 

  

 


