1,445 research outputs found

    Combined Modality Therapies for High-Risk Prostate Cancer: Narrative Review of Current Understanding and New Directions.

    Get PDF
    Despite the many prospective randomized trials that have been available in the past decade regarding the optimization of radiation, hormonal, and surgical therapies for high-risk prostate cancer (PCa), many questions remain. There is currently a lack of level I evidence regarding the relative efficacy of radical prostatectomy (RP) followed by adjuvant radiation compared to radiation therapy (RT) combined with androgen deprivation therapy (ADT) for high-risk PCa. Current retrospective series have also described an improvement in biochemical outcomes and PCa-specific mortality through the use of augmented radiation strategies incorporating brachytherapy. The relative efficacy of modern augmented RT compared to RP is still incompletely understood. We present a narrative review regarding recent advances in understanding regarding comparisons of overall and PCa-specific mortality measures among patients with high-risk PCa treated with either an RP/adjuvant RT or an RT/ADT approach. We give special consideration to recent trends toward the assembly of multi-institutional series targeted at providing high-quality data to minimize the effects of residual confounding. We also provide a narrative review of recent studies examining brachytherapy boost and systemic therapies, as well as an overview of currently planned and ongoing studies that will further elucidate strategies for treatment optimization over the next decade

    Robust and Scalable Scheme to Generate Large-Scale Entanglement Webs

    Get PDF
    We propose a robust and scalable scheme to generate an NN-qubit WW state among separated quantum nodes (cavity-QED systems) by using linear optics and postselections. The present scheme inherits the robustness of the Barrett-Kok scheme [Phys. Rev. A {\bf 71}, 060310(R) (2005)]. The scalability is also ensured in the sense that an arbitrarily large NN-qubit WW state can be generated with a quasi-polynomial overhead ∌2O[(log⁥2N)2]\sim 2^{O[(\log_2 N)^2]}. The process to breed the WW states, which we introduce to achieve the scalability, is quite simple and efficient, and can be applied for other physical systems.Comment: 5 pages, 3 figure

    On N=8 attractors

    Full text link
    We derive and solve the black hole attractor conditions of N=8 supergravity by finding the critical points of the corresponding black hole potential. This is achieved by a simple generalization of the symplectic structure of the special geometry to all extended supergravities with N>2N>2. There are two solutions for regular black holes, one for 1/8 BPS ones and one for the non-BPS. We discuss the solutions of the moduli at the horizon for BPS attractors using N=2 language. An interpretation of some of these results in N=2 STU black hole context helps to clarify the general features of the black hole attractors.Comment: 15 page

    Computational power of correlations

    Get PDF
    We study the intrinsic computational power of correlations exploited in measurement-based quantum computation. By defining a general framework the meaning of the computational power of correlations is made precise. This leads to a notion of resource states for measurement-based \textit{classical} computation. Surprisingly, the Greenberger-Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge as optimal examples. Our work exposes an intriguing relationship between the violation of local realistic models and the computational power of entangled resource states.Comment: 4 pages, 2 figures, 2 tables, v2: introduction revised and title changed to highlight generality of established framework and results, v3: published version with additional table I

    E_7 and the tripartite entanglement of seven qubits

    Get PDF
    In quantum information theory, it is well known that the tripartite entanglement of three qubits is described by the group [SL(2,C)]^3 and that the entanglement measure is given by Cayley's hyperdeterminant. This has provided an analogy with certain N=2 supersymmetric black holes in string theory, whose entropy is also given by the hyperdeterminant. In this paper, we extend the analogy to N=8. We propose that a particular tripartite entanglement of seven qubits, encoded in the Fano plane, is described by the exceptional group E_7(C) and that the entanglement measure is given by Cartan's quartic E_7 invariant.Comment: Minor improvements. 15 page late

    Proposed experiment for the quantum "Guess my number" protocol

    Full text link
    An experimental realization of the entanglement-assisted "Guess my number" protocol for the reduction of communication complexity, introduced by Steane and van Dam, would require producing and detecting three-qubit GHZ states with an efficiency eta > 0.70, which would require single photon detectors of efficiency sigma > 0.89. We propose a modification of the protocol which can be translated into a real experiment using present-day technology. In the proposed experiment, the quantum reduction of the multi-party communication complexity would require an efficiency eta > 0.05, achievable with detectors of sigma > 0.47, for four parties, and eta > 0.17 (sigma > 0.55) for three parties.Comment: REVTeX4, 4 pages, 1 figur

    Hardy's argument and successive spin-s measurements

    Full text link
    We consider a hidden-variable theoretic description of successive measurements of non commuting spin observables on a input spin-s state. In this scenario, the hidden-variable theory leads to a Hardy-type argument that quantum predictions violate it. We show that the maximum probability of success of Hardy's argument in quantum theory is (12)4s(\frac{1}{2})^{4s}, which is more than in the spatial case.Comment: 7 page

    Entanglement Purification of Any Stabilizer State

    Get PDF
    We present a method for multipartite entanglement purification of any stabilizer state shared by several parties. In our protocol each party measures the stabilizer operators of a quantum error-correcting code on his or her qubits. The parties exchange their measurement results, detect or correct errors, and decode the desired purified state. We give sufficient conditions on the stabilizer codes that may be used in this procedure and find that Steane's seven-qubit code is the smallest error-correcting code sufficient to purify any stabilizer state. An error-detecting code that encodes two qubits in six can also be used to purify any stabilizer state. We further specify which classes of stabilizer codes can purify which classes of stabilizer states.Comment: 11 pages, 0 figures, comments welcome, submitting to Physical Review

    Universal Measure of Entanglement

    Full text link
    A general framework is developed for separating classical and quantum correlations in a multipartite system. Entanglement is defined as the difference in the correlation information encoded by the state of a system and a suitably defined separable state with the same marginals. A generalization of the Schmidt decomposition is developed to implement the separation of correlations for any pure, multipartite state. The measure based on this decomposition is a generalization of the entanglement of formation to multipartite systems, provides an upper bound for the relative entropy of entanglement, and is directly computable on pure states. The example of pure three-qubit states is analyzed in detail, and a classification based on minimal, four-term decompositions is developed.Comment: 4 page

    A local hidden variable theory for the GHZ experiment

    Get PDF
    A recent analysis by de Barros and Suppes of experimentally realizable GHZ correlations supports the conclusion that these correlations cannot be explained by introducing local hidden variables. We show, nevertheless, that their analysis does not exclude local hidden variable models in which the inefficiency in the experiment is an effect not only of random errors in the detector equipment, but is also the manifestation of a pre-set, hidden property of the particles ("prism models"). Indeed, we present an explicit prism model for the GHZ scenario; that is, a local hidden variable model entirely compatible with recent GHZ experiments.Comment: 17 pages, LaTeX, 7 eps figures, computer demo: http://hps.elte.hu/~leszabo/GHZ.html, an improper figure is replace
    • 

    corecore