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ABSTRACT

In quantum information theory, it is well known that the tripartite entanglement of three
qubits is described by the group [SL(2, C)]3 and that the entanglement measure is given by
Cayley’s hyperdeterminant. This has provided an analogy with certain N = 2 supersym-
metric black holes in string theory, whose entropy is also given by the hyperdeterminant.
In this paper, we extend the analogy to N = 8. We propose that a particular tripartite
entanglement of seven qubits, encoded in the Fano plane, is described by the exceptional
group E7(C) and that the entanglement measure is given by Cartan’s quartic E7 invariant.
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1 Cayley’s hyperdeterminant, black holes and qubits

In 1845 Cayley [1] generalized the determinant of a 2 × 2 matrix aAA′

det a =
1

2
ǫABǫA′B′

aAA′aBB′

= a00a11 − a01a10 (1.1)

to the hyperdeterminant of a 2 × 2 × 2 hypermatrix aAA′A′′

Det a = −1

2
ǫABǫA′B′

ǫCDǫC′D′

ǫA′′D′′

ǫB′′C′′

aAA′A′′aBB′B′′aCC′C′′aDD′D′′

= a2
000a

2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

100a
2
011

−2(a000a001a110a111 + a000a010a101a111

+a000a100a011a111 + a001a010a101a110

+a001a100a011a110 + a010a100a011a101)

+4(a000a011a101a110 + a001a010a100a111) (1.2)

The hyperdeterminant vanishes iff the following system of equations in six unknowns pA, qA′

, rA′′

has a nontrivial solution, not allowing any of the pairs to be both zero:

aAA′A′′pAqA′

= 0

aAA′A′′pArA′′

= 0

aAA′A′′qA′

rA′′

= 0 (1.3)

For our purposes, the important properties of the hyperdeterminant are that it is a quar-
tic invariant under [SL(2)]3 and under a triality that interchanges A, A′ and A′′. These
properties are valid whether the aAA′A′′ are complex, real or integer.

The hyperdeterminant makes it appearance in quantum information theory [2]. Let the
three qubit system ABC (Alice, Bob amd Charlie) be in a pure state |Ψ〉, and let the
components of |Ψ〉 in the standard basis be aABC :

|Ψ〉 = aABC |ABC〉 (1.4)

Then the three way entanglement of the three qubits A, B and C is given by the 3-tangle [3]

τ3(ABC) = 4|Det aABC |. (1.5)

However, one of us recently found another physical application of this hyperdeterminant
[4] by associating the eight components of aABC with the four electric and four magnetic
charges of the STU black hole in four-dimensional string theory [5] and showing that its
entropy [6] is given by

S = π
√

|Det aABC |. (1.6)
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As far as we can tell [4], the appearance of the Cayley hyperdeterminant in these two dif-
ferent contexts of stringy black hole entropy (where the aABC are integers and the symmetry
is [SL(2, Z)]3) and three-qubit quantum entanglement (where the aABC are complex num-
bers and the symmetry is [SL(2, C]3) is a purely mathematical coincidence. Nevertheless,
it has already provided fascinating new insights [7, 8] into the connections between strings,
black holes, and quantum information3.

The black holes described by Cayley’s hyperdeterminant are those of N = 2 supergravity
coupled to three vector multiplets, where the symmetry is [SL(2, Z)]3. One might therefore
ask whether the black hole/information theory correspondence could be generalized. There
are three generalizations we might consider:

1) N = 2 supergravity coupled to l vector multiplets where the symmetry is SL(2, Z) ×
SO(l − 1, 2, Z) and the black holes carry charges belonging to the (2, l + 1) representation
(l + 1 electric plus l + 1 magnetic).

2) N = 4 supergravity coupled to m vector multiplets where the symmetry is SL(2, Z)×
SO(6, 6+m, Z) where the black holes carry charges belonging to the (2, 12+m) representation
(m + 12 electric plus m + 12 magnetic).

3) N = 8 supergravity where the symmetry is the non-compact exceptional group
E7(7)(Z) and the black holes carry charges belonging to the fundamental 56-dimensional
representation (28 electric plus 28 magnetic).

In all three case there exit quartic invariants akin to Cayley’s hyperdeterminant whose
square root yields the corresponding black hole entropy. If there is to be a quantum infor-
mation theoretic interpretation, however, it cannot just be random entanglement of more
qubits, because the general n qubit entanglement is described by the group [SL(2, C)]n,
which, even after replacing Z by C, differs from the above symmetries (except when n = 3,
which correspond to case (1) above with l = 3, the case we already know.).

In this paper we focus on the N = 8 case and, noting that

E7(7)(Z) ⊃ [SL(2, Z)]7 (1.7)

and
E7(C) ⊃ [SL(2, C)]7, (1.8)

we show that the corresponding system in quantum information theory is that of seven
qubits (Alice, Bob, Charlie, Daisy, Emma, Fred and George). However, the larger symmetry
requires that they undergo at most tripartite entanglement of a very specific kind. The
entanglement measure will be given by the quartic Cartan E7(C) invariant [11, 12, 13,
14]. The entanglement may be represented by the Fano plane [10] which also provides the
multiplication table of the split octonions4.

The N = 4 case (2) with m = 0 is a subsector of the N = 8 case (3) and can be shown
also to correspond to particular tripartite entanglement of seven qubits. The familiar N = 2
case with l = 3 is also a subsector, but with three qubits.

3A third application [9], not considered in this paper, is the Nambu-Goto string whose action is also given
by

√

|Det aABC | in spacetime signature (2, 2).
4We are grateful to Murat Gunaydin for pointing out the connection between our entanglement diagram,

Figure 1, and the multiplication table of the split octonions. This result was was announced by one of (MJD)
at the Supergravity at 30 Conference, Paris, 19/10/06.

3



2 Decomposition of E7(7)

Consider the decomposition of the fundamental 56-dimensional representation of E7(7) under
its maximal subgroup

E7(7) ⊃ SL(2)A × SO(6, 6)

56 → (2, 12) + (1, 32) (2.1)

Further decomposing SO(6, 6),

SL(2)A × SO(6, 6) ⊃ SL(2)A × SL(2)B × SL(2)D × SO(4, 4)

(2, 12) + (1, 32) → (2, 2, 2, 1)

+(2, 1, 1, 8v) + (1, 2, 1, 8s) + (1, 1, 2, 8c) (2.2)

Further decomposing SO(4, 4),

SL(2)A × SL(2)B × SL(2)D × SO(4, 4) ⊃ SL(2)A × SL(2)B × SL(2)D

×SO(2, 2) × SO(2, 2)

(2, 2, 2, 1) + (2, 1, 1, 8v) + (1, 2, 1, 8s) + (1, 1, 2, 8c) →
(2, 2, 2, 1, 1) + (2, 1, 1, 4, 1) + (2, 1, 1, 1, 4)

+(1, 2, 1, 2, 2) + (1, 2, 1, 2, 2) + (1, 1, 2, 2, 2) + (1, 1, 2, 2, 2) (2.3)

Finally, further decomposing each SO(2, 2)

SL(2)A × SL(2)B × SL(2)D × SO(2, 2)× SO(2, 2) ⊃
SL(2)A × SL(2)B × SL(2)D × SL(2)C × SL(2)G × SL(2)F × SL(2)E

(2, 2, 2, 1, 1) + (2, 1, 1, 4, 1) + (2, 1, 1, 1, 4)

+(1, 2, 1, 2, 2) + (1, 2, 1, 2, 2) + (1, 1, 2, 2, 2) + (1, 1, 2, 2, 2) →
(2, 2, 2, 1, 1, 1, 1) + (2, 1, 1, 2, 2, 1, 1) + (2, 1, 1, 1, 1, 2, 2)+

(1, 2, 1, 2, 1, 1, 2) + (1, 2, 1, 1, 2, 2, 1) + (1, 1, 2, 2, 1, 2, 1) + (1, 1, 2, 1, 2, 1, 2)

In summary,

E7(7) ⊃ SL(2)A × SL(2)B × SL(2)C × SL(2)D × SL(2)E × SL(2)F × SL(2)G (2.4)

and the 56 decomposes as
56 →

(2, 2, 1, 2, 1, 1, 1)

+(1, 2, 2, 1, 2, 1, 1)

+(1, 1, 2, 2, 1, 2, 1)

+(1, 1, 1, 2, 2, 1, 2)

+(2, 1, 1, 1, 2, 2, 1)

+(1, 2, 1, 1, 1, 2, 2)

+(2, 1, 2, 1, 1, 1, 2) (2.5)

An analogous decomposition holds for

E7(C) ⊃ [SL(2, C)]7. (2.6)
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3 Tripartite entanglement of 7 qubits

We have seen that in the case of three qubits, the tripartite entanglement is described by
[SL(2, C)]3 and that the entanglement measure is given by Cayley’s hyperdeterminant. Now
we consider seven qubits (Alice, Bob, Charlie, Daisy, Emma, Fred and George) but where
Alice has tripartite entanglement not only with Bob/Charlie but also with Daisy/Emma and
also Fred/George, and similarly for the other six individuals. So, in fact, each person has
tripartite entanglement with each of the remaining three couples:

|Ψ〉 =

aABD|ABD〉
+bBCE |BCE〉
+cCDF |CDF 〉
+dDEG|DEG〉
+eEFA|EFA〉
+fFGB|FGB〉
+gGAC |GAC〉 (3.1)

Note that:
1) Any pair of states has an individual in common
2) Each individual is excluded from four out of the seven states
3) Two given individuals are excluded from two out of the seven states
4) Three given individuals are never excluded
The entanglement may be represented by a heptagon with vertices A,B,C,D,E,F,G and

seven triangles ABD, BCE, CDF, DEG, EFA, FGB, and GAC. See Figure 1. Alternatively,
we can use the Fano plane. See Figure 2. The Fano plane corresponds to the multiplication
table of the split octonions as may be seen from the description of the state |Ψ〉 given in
Table 1.

Each of the seven states transforms as a (2, 2, 2) under three of the SL(2)’s and are singlets
under the remaining four. Note that from (2.2) we see that the A-B-C triality of section 1 is
linked with the 8v−8s−8c triality of the SO(4, 4). For example, interchanging A and B leaves
|Ψ〉 invariant provided we also interchange C and F. Individually, therefore, the tripartite
entanglement of each of the seven states is given by Cayley’s hyperdeterminant. Taken
together however, we see from (2.5) that they transform as a complex 56 of E7(C). Their
tripartite entanglement must be is given by an expression that is quartic in the coefficients
a, b, c, d, e, f, g and invariant under E7(C). The unique possibility is the Cartan invariant J4,
and so the 3-tangle is given by

τ3(ABCDEFG) = 4|J4| (3.2)

If the wave-function (3.1) is normalized, then 0 ≤ τ3(ABCDEFG) ≤ 1.
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A

B

C

DE

F

G

Figure 1: The E7 entanglement diagram. Each of the seven vertices A,B,C,D,E,F,G rep-
resents a qubit and each of the seven triangles ABD, BCE, CDF, DEG, EFA, FGB, GAC
describes a tripartite entanglement.

4 Cartan’s E7(7) invariant

The Cremmer-Julia [12] form of the Cartan E7(7) invariant may be written as

J4 = Tr(ZZ̄)2 − 1
4
(Tr ZZ̄)2 + 4(Pf Z + Pf Z̄ ) , (4.1)

and the Cartan form [11] may be written as

J4 = −Tr( x y)2 + 1
4
(Tr x y)2 − 4(Pf x + Pf y ) . (4.2)

Here

ZAB = − 1

4
√

2
(xab + iyab)(Γ

ab)AB (4.3)

and

xab + iyab = −
√

2

4
ZAB(ΓAB)ab (4.4)

The matrices of the SO(8) algebra are (Γab)AB where (a b) are the 8 vector indices and (A, B)
are the 8 spinor indices. The (Γab)AB matrices can be considered also as (ΓAB)ab matrices due
to equivalence of the vector and spinor representations of the SO(8) Lie algebra. The exact
relation between the Cartan invariant in (4.2) and Cremmer-Julia invariant [12] in (4.1) was
established in [15, 16]. The quartic invariant J4 of E7(7) is also related to the octonionic
Jordan algebra JO

3 [14].
In the stringy black hole context, ZAB is the central charge matrix and (x, y) are the

quantized charges of the black hole (28 electric and 28 magnetic). The relation between the
entropy of stringy black holes and the Cartan-Cremmer-Julia E7(7) invariant was established
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C

A

D

Figure 2: The Fano plane has seven points, representing the seven qubits, and seven lines
(the circle counts as a line) with three points on every line, representing the tripartite
entanglement, and three lines through every point.

in [13]. The central charge matrix ZAB can be brought to the canonical basis for the skew-
symmetric matrix using an SU(8) transformation:

Zab =











z1 0 0 0
0 z2 0 0
0 0 z3 0
0 0 0 z4











⊗
(

0 1
−1 0

)

(4.5)

where zi = ρie
iϕi are complex. In this way the number of entries is reduced from 56 to 8. In a

systematic treatment in [17], the meaning of these parameters was clarified. From 4 complex
values of zi = ρie

iϕi one can remove 3 phases by an SU(8) rotation, but the overall phase
cannot be removed; it is related to an extra parameter in the class of black hole solutions
[18, 19]. In this basis, the quartic invariant takes the form [13]

J4 =
∑

i

|zi|4 − 2
∑

i<j

|zi|2|zj|2 + 4(z1z2z3z4 + z̄1z̄2z̄3z̄4)

= (ρ1 + ρ2 + ρ3 + ρ4)(ρ1 + ρ2 − ρ3 − ρ4)(ρ1 − ρ2 + ρ3 − ρ4)(ρ1 − ρ2 − ρ3 + ρ4)

+8ρ1ρ2ρ3ρ4(cos ϕ − 1) (4.6)

Therefore a 5-parameter solution is called a generating solution for other black holes in N=8
supergravity/M-theory. The expression for their entropy is always given by

S = π
√

|J4| (4.7)

for some subset of 5 of the 8 parameters mentioned above. Recently a new class of solutions
was discovered, describing black rings. The maximal number of parameters for the known
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A B C D E F G

A D G -B F -E -C

B -D E A -C G -F

C -G -E F B -D A

D B -A -F G C -E

E -F C -B -G A D

F E -G D -C -A B

G C F -A E -D -B

Table 1: The entanglement of the state |Ψ〉 coincides with the multiplication table of the
split octonions.

solutions is 7. The entropy of black ring solutions found so far was identified in [20, 21] with
the expression (4.7) for a subset of 7 out of 8 parameters mentioned above.

Kallosh and Linde have shown that J4 depending on 4 complex eigenvalues can be rep-
resented as Cayley’s hyperdeterminant of a hypermatrix aABC . To see this, we that in x, y
basis only the SO(8) symmetry is manifest, which means that every term in (4.2) is invariant
only under SO(8) symmetry. However, it was proved in [11] and [12] that the sum of all
terms in (4.2) is invariant under the full SU(8) symmetry, which acts as follows

δ(xab ± iyab) = (2Λ[a
[cδ

b]
d] ± iΣabcd)(x

cd ∓ iycd) . (4.8)

The total number of parameters is 63, where 28 are from the manifest SO(8) and 35 from the
antisymmetric self-dual Σabcd = ∗Σabcd. Thus one can use the SU(8) transformation of the
complex matrix xab + iyab and bring it to the canonical form with some complex eigenvalues
λI , I = 1, 2, 3, 4. The value of the quartic invariant (4.2) will not change.

(xab + iyab)can =































0 λ1 0 0 0 0 0 0
−λ1 0 0 0 0 0 0 0
0 0 0 λ2 0 0 0 0
0 0 −λ2 0 0 0 0 0
0 0 0 0 0 λ3 0 0
0 0 0 0 −λ3 0 0 0
0 0 0 0 0 0 0 λ4

0 0 0 0 0 0 −λ4 0































(4.9)

The relation between the complex coefficients λI , the parameters xij and ykl, the matrix
aABC and the black hole charges pi and qk is given by the following dictionary:

λ1 = x12 + iy12 = a111 + ia000 = q0 + ip0
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λ2 = x34 + iy34 = a001 + ia110 = −p1 + iq1

λ3 = x56 + iy56 = a010 + ia101 = −p2 + iq2

λ4 = x78 + iy78 = a100 + ia011 = −p3 + iq3 (4.10)

If we now write the quartic E7(7) Cartan invariant in the canonical basis (xij , y
ij), i, j =

1, ..., 8:

J4 = −(x12y
12 + x34y

34 + x56y
56 + x78y

78)2 − 4(x12x34x56x78 + y12y34y56y78)
+4(x12x34y

12y34 + x12x56y
12y56 + x34x56y

34y56 + x12x78y
12y78 + x34x78y

34y78

+x56x78y
56y78) . (4.11)

then it may now be compared to Cayley’s hyperdeterminant (1.2). We find

J4 = −Det a (4.12)

The above discussion of E7(7) also applies, mutatis mutandis, to E7(C).

5 Decomposition of J4

To understand better the entanglement we note that, as a result of (2.5), Cartan’s invariant
contains not one Cayley hyperdeterminant but seven! It may be written as the sum of seven
terms each of which is invariant under [SL(2)]3 plus cross terms. To see this, denote a 2 in
one of the seven entries in (2.5) by A, B, C, D, E, F, G. So we may rewrite (2.5) as

56 = (ABD) + (BCE) + (CDF ) + (DEG) + (EFA) + (FGB) + (GAC) (5.1)

or symbolically
56 = a + b + c + d + e + f + g (5.2)

Then J4 is the singlet in 56 × 56 × 56 × 56:

J4 ∼ a4 + b4 + c4 + d4 + e4 + f 4 + g4+

6[a2b2 + b2c2 + c2d2 + d2e2 + e2f 2 + f 2g2 + g2a2+

a2c2 + b2d2 + c2e2 + d2f 2 + e2g2 + f 2a2 + g2b2+

a2d2 + b2e2 + c2f 2 + d2g2 + e2a2 + f 2b2 + g2c2]

+24[bceg + cdef + bdfg + abef + acfg + adeg + abcd] (5.3)

where products like
a4 = (ABD)(ABD)(ABD)(ABD)

= ǫA1A2ǫB1B2ǫA3A4ǫB3B4ǫD1D4ǫD2D3aA1B1D1
aA2B2D2

aA3B3D3
aA4B4D4

(5.4)

exclude four individuals (here Charlie, Emma, Fred and George), products like

a2b2 = (ABD)(ABD)(FGB)(FGB)

= ǫA1A2ǫD1D2ǫB1B3ǫB2B4ǫG3G4ǫF3F4aA1B1D1
aA2B2D2

bF3G3B3
bF4G4B4

(5.5)

exclude two individuals (here Charlie and Emma), and products like

acfg = (ABD)(CDF )(FGB)(GAC)

= ǫA1A4ǫB1B2ǫD1D3ǫC3C4ǫG2G4ǫF2F3aA1B1D1
cC2D2F2

fF3G3B3
gG4A4C4

(5.6)

exclude one individual (here Emma).
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6 The black hole analogy

In the STU stringy black hole context [4, 5, 6, 7] the aABC are integers (corresponding to
quantized charges) and hence the symmetry group is [SL(2, Z)]3 rather than [SL(2, C)]3.
However, as discussed by Levay [8], there is a branch of quantum information theory which
concerns itself with real qubits, called rebits, for which the aABC are real. (One difference
remains, however: one may normalize the wave function, whereas for black holes there is no
such restriction on the charges aABC .) It turns out that there are three reality classes which
can be characterized by the hyperdeterminant

1) Det a < 0

2) Det a = 0

3) Det a > 0 (6.1)

Case (1) corresponds to the non-separable or GHZ class [23], for example,

|Ψ〉 =
1

2
(−|000〉 + |011〉 + |101〉 + |110〉) (6.2)

Case (2) corresponds to the separable (A-B-C, A-BC, B-CA, C-AB) and Werner classes, for
example

|Ψ〉 =
1√
3
(|100〉 + |010〉 + |001〉) (6.3)

In the string/supergravity interpretation [4], cases (1) and (2) were shown to correspond to
BPS black holes, for which half of the supersymmetry is preserved. Case (1) has non-zero
horizon area and entropy (“large” black holes), and case (2) to vanishing horizon area and
entropy (“small” black holes), at least at the semi-classical level. However, small black holes
may acquire a non-zero entropy through higher order quantum effects. This entropy also has
a quantum information interpretation involving bipartite entanglement of the three qubits
[7].

Case (3) is also GHZ, for example the above GHZ state (6.2) with a sign flip

|Ψ〉 =
1

2
(|000〉 + |011〉 + |101〉 + |110〉) (6.4)

In the string/supergravity interpretation, case (3) corresponds to non-BPS black holes [7].
With four non-zero charges (q0, p

1, p2, p3) in (4.10), for example, an extreme but non-BPS
black hole [24] may be obtained by flipping the sign [25] of one of the charges. The canonical
GHZ state

|Ψ〉 =
1√
2
|111〉 +

1√
2
|000〉 (6.5)

also belongs to case (3).
In the N = 8 theory, “large” and “small” black holes are classified by the sign of J4:

1) J4 > 0

2) J4 = 0

10



3) J4 < 0 (6.6)

Once again, non-zero J4 corresponds to large black holes, which are BPS for J4 > 0 and
non-BPS for J4 < 0, and vanishing J4 to small black holes. However, in contrast to N = 2,
case (1) requires that only 1/8 of the supersymmetry is preserved, while we may have 1/8,
1/4 or 1/2 for case (2).

It is worth noting that the charge orbits corresponding to non-zero J4 are associated with
the following cosets:

E7(7)

E6(2)
(6.7)

and
E7(7)

E6(6)

(6.8)

The large black hole solutions can be found [26] by solving the N = 8 classical attractor
equations [22] when at the attractor value the ZAB matrix, in normal form, becomes

ZAB =











Zǫ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0











(6.9)

for positive J4 and

ZAB = eiπ/4|Z|











ǫ 0 0 0
0 ǫ 0 0
0 0 ǫ 0
0 0 0 ǫ











(6.10)

for negative J4. These values exhibit the maximal compact symmetries SU(6)× SU(2) and
USp(8) for the positive and negative J4, respectively.

If the phase in (4.6) vanishes (which is the case if the configuration preserves at least 1/4
supersymmetry [17]), J4 becomes

J4 = λ1λ2λ3λ4 , (6.11)

where we have defined λi by
λ1 = ρ1 + ρ2 + ρ3 + ρ4

λ2 = ρ1 + ρ2 − ρ3 − ρ4

λ3 = ρ1 − ρ2 + ρ3 − ρ4

λ4 = ρ1 − ρ2 − ρ3 + ρ4 (6.12)

and we order the λi so that λ1 ≥ λ2 ≥ λ3 ≥ |λ4|. The charge orbits for the small black holes
depend on the number of unbroken supersymmetries or the number of vanishing eigenvalues.
The orbit is [14, 17, 27]

E7(7)

H1,2,3

(6.13)

where
H1 = F4(4) ×T26 λ1, λ2, λ3 6= 0, λ4 = 0 (1/8 BPS)

11



H2 = SO(5, 6)×(T32 × T1) λ1, λ2 6= 0, λ3, λ4 = 0 (1/4 BPS)

H3 = E6(6) ×T27 λ1 6= 0, λ2, λ3, λ4 = 0 (1/2 BPS) (6.14)

For N = 8, as for N = 2, the large black holes correspond to the two classes of GHZ-type
(entangled) states and small black holes to the separable or Werner class.

7 Subsectors

Having understood the analogy between N = 8 black holes and the tripartite entanglement
of 7 qubits using E7(7), we may now find the analogy in the N = 4 case using SL(2)×SO(6, 6)
and the N = 2 case using SL(2) × SO(2, 2).

For N = 4, as may be seen from (2.2), we still have an [SL(2)]7 subgroup but now there
are only 24 states

|Ψ〉 = aABD|ABD〉 + eEFA|EFA〉 + gGAC |GAC〉 (7.1)

So only Alice talks to all the others. This is described by just those three lines passing
through A in the Fano plane. Then the equations analagous to (5.1) and (5.2) are

(2, 12) = (ABD) + (EFA) + (GAC) = a + e + g (7.2)

and the corresponding quartic invariant, J4, reduces to the singlet in (2, 12) × (2, 12) ×
(2, 12) × (2, 12).

J4 ∼ a4 + e4 + g4 + 6[e2g2 + g2a2 + a2e2] (7.3)

If we identify the 24 numbers (aABD, eEFA, gGAC) with (pµ, qν) with µ, ν = 1, . . . 12 in a way
analogous to (4.10), this becomes [5, 18, 19]

J4 = p2q2 − (p.q)2 (7.4)

For N = 2, as may be seen from (2.2), we only an [SL(2)]3 subgroup and there are only
8 states

|Ψ〉 = aABD|ABD〉 (7.5)

This is described by just the ABD line in the Fano plane. This is simply the usual tripartite
entanglement, for which

(2, 2, 2) = (ABD) = a (7.6)

and the corresponding quartic invariant

J4 ∼ a4 (7.7)

is just Cayley’s hyperdeterminant
J4 = −Deta (7.8)
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8 Conclusions

The Fano plane also finds application in switching networks that can connect any phone to
any other phone. It is the 3-switching network for 7 numbers. However there also exists a
4-switching network for 13 numbers, a 5-switching network for 21 numbers, and generally an
(n+1)-switching network for (n2 +n+1) numbers corresponding to the projective planes of
order n [28]. It would be interesting to explore the corresponding quantum bit entanglements.

Exceptional groups, such as E7(7), have featured in supergravity, string theory, M-theory
and other speculative attempts at unification of the fundamental forces. However, as far
as we are aware, this is the first time that an exceptional group has appeared in physics
as well-established as the Copenhagen interpretation of quantum mechanics. It would be
interesting to see whether it can be subject to experimental test.
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10 Note added

Just before the submission of version 2 of this paper to the arXiv, an interesting paper by
Levay [29] appeared, which also describes the entanglement in terms of the Fano plane.
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