318 research outputs found
Current-induced two-level fluctuations in pseudo spin-valves (Co/Cu/Co) nanostructures
Two-level fluctuations of the magnetization state of pseudo spin-valve
pillars Co(10 nm)/Cu(10 nm)/Co(30 nm) embedded in electrodeposited nanowires
(~40 nm in diameter, 6000 nm in length) are triggered by spin-polarized
currents of 10^7 A/cm^2 at room temperature. The statistical properties of the
residence times in the parallel and antiparallel magnetization states reveal
two effects with qualitatively different dependences on current intensity. The
current appears to have the effect of a field determined as the bias field
required to equalize these times. The bias field changes sign when the current
polarity is reversed. At this field, the effect of a current density of 10^7
A/cm^2 is to lower the mean time for switching down to the microsecond range.
This effect is independent of the sign of the current and is interpreted in
terms of an effective temperature for the magnetization.Comment: 4 pages, 5 figures, revised version, to be published in Phys. Rev.
Let
Antireflection of an absorbing substrate by an absorbing thin film at normal incidence
An absorbing substrate of complex refractive index n2 - jk2 at wavelength λ can be coated by an absorbing thin film of complex refractive index n1 - jk1 and thickness d to achieve zero reflection at normal incidence. For given n2,k2 multiple solutions (n1,k1,d/λ) are found that correspond to infinitely many distinct antireflection layers. This is demonstrated for a Si substrate at two wavelengths (6328 and 4420 Å). The response of these absorbing antireflection layers to changes of the angle of incidence from 0 to 45° and to changes of thickness of ±10% is also determined and compared to the limting case of a nonabsorbing antireflection layer
Antireflection of an absorbing substrate by an absorbing thin film at normal incidence
An absorbing substrate of complex refractive index n2 - jk2 at wavelength λ can be coated by an absorbing thin film of complex refractive index n1 - jk1 and thickness d to achieve zero reflection at normal incidence. For given n2,k2 multiple solutions (n1,k1,d/λ) are found that correspond to infinitely many distinct antireflection layers. This is demonstrated for a Si substrate at two wavelengths (6328 and 4420 Å). The response of these absorbing antireflection layers to changes of the angle of incidence from 0 to 45° and to changes of thickness of ±10% is also determined and compared to the limting case of a nonabsorbing antireflection layer
Global linear stability analysis of kinetic Trapped Ion Mode (TIM) turbulence in tokamak plasma using spectral method
Trapped ion modes (TIM) which belong to the family of ion temperature
gradient (ITG) modes, is one of the important ingredients in heat turbulent
transport at the ion scale in tokamak plasmas. It is essential to properly
estimate their linear growth rate to understand their influence on ion-scale
turbulent transport. A global linear analysis of a reduced gyro-bounce kinetic
model for trapped particle modes is performed, and a spectral method is
proposed to solve the dispersion relation. Importantly, the radial profile of
the particle drift velocity is taken into account in the linear analysis by
considering the exact magnetic flux {\psi} dependency of the equilibrium
Hamiltonian H_{eq}({\psi}) in the quasi-neutrality equation and equilibrium
gyro-bounce averaged distribution function F_{eq} . Using this spectral method,
linear growth-rates of TIM instability in presence of different temperature
profiles and precession frequencies of trapped ions, with an approximated
constant Hamiltonian and the exact {\psi} dependent equilibrium Hamiltonian,
are investigated. The growth-rate depends on the logarithmic gradient of
temperature \kappa_{T} , density \kappa_{n} and equilibrium Hamiltonian
\kappa_{\Lambda} . With the exact {\psi} dependent Hamiltonian, the growth
rates and potential profiles are modified significantly, compared to the cases
with approximated constant Hamiltonian. All the results from the global linear
analysis agree with a semi-Lagrangian based linear Vlasov solver with a good
accuracy. This spectral method is very fast and requires very less computation
resources compared to a linear version of Vlasov-solver based on a
semi-Lagrangian scheme
Spin-transfer in an open ferromagnetic layer: from negative damping to effective temperature
Spin-transfer is a typical spintronics effect that allows a ferromagnetic
layer to be switched by spin-injection. Most of the experimental results about
spin transfer are described on the basis of the Landau-Lifshitz-Gilbert
equation of the magnetization, in which additional current-dependent damping
factors are added, and can be positive or negative. The origin of the damping
can be investigated further by performing stochastic experiments, like one shot
relaxation experiments under spin-injection in the activation regime of the
magnetization. In this regime, the N\'eel-Brown activation law is observed
which leads to the introduction of a current-dependent effective temperature.
In order to justify the introduction of these counterintuitive parameters
(effective temperature and negative damping), a detailed thermokinetic analysis
of the different sub-systems involved is performed. We propose a thermokinetic
description of the different forms of energy exchanged between the electric and
the ferromagnetic sub-systems at a Normal/Ferromagnetic junction. The
corresponding Fokker Planck equations, including relaxations, are derived. The
damping coefficients are studied in terms of Onsager-Casimir transport
coefficients, with the help of the reciprocity relations. The effective
temperature is deduced in the activation regime.Comment: 65 pages, 10 figure
Fermi-Edge Singularities in AlxGa1-xAs Quantum Wells : Extrinsic Versus Many-Body Scattering Processes
A Fano resonance mechanism is evidenced to control the formation of optical
Fermi-edge singularities in multi-subband systems such as remotely doped
AlxGa1-xAs heterostructures. Using Fano parameters, we probe the physical
nature of the interaction between Fermi-sea electrons and empty conduction
subbands. We show that processes of extrinsic origin like alloy-disorder
prevail easily at 2D over multiple diffusions from charged valence holes
expected by many-body scenarios.Comment: 4 pages, 3 figures, accepted for publication in Physical Review
Letter
Bacterial lipid II analogs : novel in vitro substrates for mammalian oligosaccharyl diphosphodolichol diphosphatase (DLODP) activities
Mammalian protein N-glycosylation requires the transfer of an oligosaccharide containing 2 residues of N-acetylglucosamine, 9 residues of mannose and 3 residues of glucose (Glc3Man9 GlcNAc2) from Glc3Man9GlcNAc2-diphospho (PP)-dolichol (DLO) onto proteins in the endoplasmic reticulum (ER). Under some pathophysiological conditions, DLO biosynthesis is perturbed, and truncated DLO is hydrolyzed to yield oligosaccharyl phosphates (OSP) via unidentified mechanisms. DLO diphosphatase activity (DLODP) was described in vitro, but its characterization is hampered by a lack of convenient non-radioactive substrates. Our objective was to develop a fluorescence-based assay for DLO hydrolysis. Using a vancomycin-based solid-phase extraction procedure coupled with thin layer chromatography (TLC) and mass spectrometry, we demonstrate that mouse liver membrane extracts hydrolyze fluorescent bacterial lipid II (LII: GlcNAc-MurNAc(dansyl-pentapeptide)-PP-undecaprenol) to yield GlcNAc-MurNAc(dansyl-pentapeptide)-P (GM5P). GM5P production by solubilized liver microsomal proteins shows similar biochemical characteristics to those reported for human hepatocellular carcinoma HepG2 cell DLODP activity. To conclude, we show, for the first time, hydrolysis of lipid II by a eukaryotic enzyme. As LII and DLO are hydrolyzed by the same, or closely related, enzymes, fluorescent lipid II analogs are convenient non-radioactive substrates for investigating DLODP and DLODP-like activities
Spin relaxation in low-dimensional systems
We review some of the newest findings on the spin dynamics of carriers and
excitons in GaAs/GaAlAs quantum wells. In intrinsic wells, where the optical
properties are dominated by excitonic effects, we show that exciton-exciton
interaction produces a breaking of the spin degeneracy in two-dimensional
semiconductors. In doped wells, the two spin components of an optically created
two-dimensional electron gas are well described by Fermi-Dirac distributions
with a common temperature but different chemical potentials. The rate of the
spin depolarization of the electron gas is found to be independent of the mean
electron kinetic energy but accelerated by thermal spreading of the carriers.Comment: 1 PDF file, 13 eps figures, Proceedings of the 1998 International
Workshop on Nanophysics and Electronics (NPE-98)- Lecce (Italy
Spatiotemporal PET reconstruction using ML-EM with learned diffeomorphic deformation
Patient movement in emission tomography deteriorates reconstruction quality
because of motion blur. Gating the data improves the situation somewhat: each
gate contains a movement phase which is approximately stationary. A standard
method is to use only the data from a few gates, with little movement between
them. However, the corresponding loss of data entails an increase of noise.
Motion correction algorithms have been implemented to take into account all the
gated data, but they do not scale well, especially not in 3D. We propose a
novel motion correction algorithm which addresses the scalability issue. Our
approach is to combine an enhanced ML-EM algorithm with deep learning based
movement registration. The training is unsupervised, and with artificial data.
We expect this approach to scale very well to higher resolutions and to 3D, as
the overall cost of our algorithm is only marginally greater than that of a
standard ML-EM algorithm. We show that we can significantly decrease the noise
corresponding to a limited number of gates
- …